#' @title Detect changes in time series
#' @name sits_detect_change
#'
#' @author Gilberto Camara, \email{gilberto.camara@@inpe.br}
#' @author Felipe Carlos, \email{efelipecarlos@@gmail.com}
#' @author Felipe Carvalho, \email{felipe.carvalho@@inpe.br}
#'
#' @description Given a set of time series or an image, this function compares
#' each time series with a set of change/no-change patterns, and indicates
#' places and dates where change has been detected.
#'
#' @param data Set of time series.
#' @param dc_method Detection change method (with parameters).
#' @param ... Other parameters for specific functions.
#' @param roi Region of interest (either an sf object, shapefile,
#' or a numeric vector with named XY values
#' ("xmin", "xmax", "ymin", "ymax") or
#' named lat/long values
#' ("lon_min", "lat_min", "lon_max", "lat_max").
#' @param filter_fn Smoothing filter to be applied - optional
#' (closure containing object of class "function").
#' @param impute_fn Imputation function to remove NA.
#' @param start_date Start date for the classification
#' (Date in YYYY-MM-DD format).
#' @param end_date End date for the classification
#' (Date in YYYY-MM-DD format).
#' @param memsize Memory available for classification in GB
#' (integer, min = 1, max = 16384).
#' @param multicores Number of cores to be used for classification
#' (integer, min = 1, max = 2048).
#' @param output_dir Valid directory for output file.
#' (character vector of length 1).
#' @param version Version of the output
#' (character vector of length 1).
#' @param verbose Logical: print information about processing time?
#' @param progress Logical: Show progress bar?
#' @return Time series with detection labels for
#' each point (tibble of class "sits")
#' or a data cube indicating detections in each pixel
#' (tibble of class "detections_cube").
#' @noRd
sits_detect_change <- function(data, dc_method, ...) {
UseMethod("sits_detect_change", data)
}
#' @rdname sits_detect_change
#' @export
#' @noRd
sits_detect_change.sits <- function(data,
dc_method,
...,
filter_fn = NULL,
multicores = 2L,
progress = TRUE) {
# set caller for error messages
.check_set_caller("sits_detect_change_sits")
# preconditions
data <- .check_samples_ts(data)
.check_is_sits_model(dc_method)
.check_int_parameter(multicores, min = 1, max = 2048)
.check_progress(progress)
# preconditions - impute and filter functions
if (!is.null(filter_fn)) {
.check_function(filter_fn)
}
# Detect changes
.detect_change_ts(
samples = data,
dc_method = dc_method,
filter_fn = filter_fn,
multicores = multicores,
progress = progress
)
}
#' @rdname sits_detect_change
#' @export
#' @noRd
sits_detect_change.raster_cube <- function(data,
dc_method, ...,
roi = NULL,
filter_fn = NULL,
start_date = NULL,
end_date = NULL,
impute_fn = identity,
memsize = 8L,
multicores = 2L,
output_dir,
version = "v1",
verbose = FALSE,
progress = TRUE) {
# set caller for error messages
.check_set_caller("sits_detect_change_raster")
# preconditions
.check_is_raster_cube(data)
.check_cube_is_regular(data)
.check_int_parameter(memsize, min = 1, max = 16384)
.check_int_parameter(multicores, min = 1, max = 2048)
.check_output_dir(output_dir)
# preconditions - impute and filter functions
.check_function(impute_fn)
# Smoothing filter
.check_filter_fn(filter_fn)
# version is case-insensitive in sits
version <- .check_version(version)
.check_progress(progress)
# Get default proc bloat
proc_bloat <- .conf("processing_bloat_cpu")
# Spatial filter
if (.has(roi)) {
roi <- .roi_as_sf(roi)
data <- .cube_filter_spatial(cube = data, roi = roi)
}
# Temporal filter
start_date <- .default(start_date, .cube_start_date(data))
end_date <- .default(end_date, .cube_end_date(data))
data <- .cube_filter_interval(
cube = data, start_date = start_date, end_date = end_date
)
# The following functions define optimal parameters for parallel processing
# Get block size
block <- .raster_file_blocksize(.raster_open_rast(.tile_path(data)))
# Check minimum memory needed to process one block
# '2' stands for forest and non-forest
job_block_memsize <- .jobs_block_memsize(
block_size = .block_size(block = block, overlap = 0),
npaths = length(.tile_paths(data)) + 2,
nbytes = 8,
proc_bloat = proc_bloat
)
# Update multicores parameter
multicores <- .jobs_max_multicores(
job_block_memsize = job_block_memsize,
memsize = memsize,
multicores = multicores
)
# Update block parameter
block <- .jobs_optimal_block(
job_block_memsize = job_block_memsize,
block = block,
image_size = .tile_size(.tile(data)),
memsize = memsize,
multicores = multicores
)
# Prepare parallel processing
.parallel_start(
workers = multicores, log = verbose,
output_dir = output_dir
)
on.exit(.parallel_stop(), add = TRUE)
# Show block information
start_time <- .classify_verbose_start(verbose, block)
# Process each tile sequentially
detections_cube <- .cube_foreach_tile(data, function(tile) {
# Detect changes
detections_tile <- .detect_change_tile(
tile = tile,
band = "detection",
dc_method = dc_method,
block = block,
roi = roi,
filter_fn = filter_fn,
impute_fn = impute_fn,
output_dir = output_dir,
version = version,
verbose = verbose,
progress = progress
)
return(detections_tile)
})
# Show block information
.classify_verbose_end(verbose, start_time)
return(detections_cube)
}
#' @rdname sits_detect_change
#' @export
#' @noRd
sits_detect_change.default <- function(data, dc_method, ...) {
stop(.conf("messages", "sits_detect_change_default"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.