skip_on_os("mac")
skip_on_cran()
test_that("check_predictions", {
data(mtcars)
model <- lm(mpg ~ disp, data = mtcars)
set.seed(99)
out <- check_predictions(model)
expect_named(
out,
c(
"sim_1", "sim_2", "sim_3", "sim_4", "sim_5", "sim_6", "sim_7",
"sim_8", "sim_9", "sim_10", "sim_11", "sim_12", "sim_13", "sim_14",
"sim_15", "sim_16", "sim_17", "sim_18", "sim_19", "sim_20", "sim_21",
"sim_22", "sim_23", "sim_24", "sim_25", "sim_26", "sim_27", "sim_28",
"sim_29", "sim_30", "sim_31", "sim_32", "sim_33", "sim_34", "sim_35",
"sim_36", "sim_37", "sim_38", "sim_39", "sim_40", "sim_41", "sim_42",
"sim_43", "sim_44", "sim_45", "sim_46", "sim_47", "sim_48", "sim_49",
"sim_50", "y"
)
)
expect_equal(
out$sim_1,
c(
23.70112, 24.56502, 25.43419, 20.40954, 13.58266, 20.72532,
11.95366, 25.14559, 22.61286, 18.48403, 20.26737, 21.2291, 20.67149,
10.07628, 0.25886, 10.64176, 10.18407, 20.68235, 28.10115, 27.55045,
28.22301, 18.94021, 16.87727, 14.05421, 13.8378, 28.13797, 26.86451,
23.90539, 10.68719, 28.17587, 21.65853, 26.07681
),
tolerance = 1e-4
)
})
test_that("check_predictions, glmmTMB", {
skip_if_not_installed("glmmTMB")
data(mtcars)
model <- glmmTMB::glmmTMB(vs ~ disp, data = mtcars, family = binomial())
set.seed(99)
out <- check_predictions(model)
expect_named(
out,
c(
"sim_1", "sim_2", "sim_3", "sim_4", "sim_5", "sim_6", "sim_7",
"sim_8", "sim_9", "sim_10", "sim_11", "sim_12", "sim_13", "sim_14",
"sim_15", "sim_16", "sim_17", "sim_18", "sim_19", "sim_20", "sim_21",
"sim_22", "sim_23", "sim_24", "sim_25", "sim_26", "sim_27", "sim_28",
"sim_29", "sim_30", "sim_31", "sim_32", "sim_33", "sim_34", "sim_35",
"sim_36", "sim_37", "sim_38", "sim_39", "sim_40", "sim_41", "sim_42",
"sim_43", "sim_44", "sim_45", "sim_46", "sim_47", "sim_48", "sim_49",
"sim_50", "y"
)
)
expect_equal(
out$sim_1,
c(
1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1
),
tolerance = 1e-4
)
expect_true(attributes(out)$model_info$is_bernoulli)
model <- glmmTMB::glmmTMB(vs ~ disp + (1 | cyl), data = mtcars, family = binomial())
set.seed(99)
out <- check_predictions(model)
expect_equal(
out$sim_1,
c(
0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0
),
tolerance = 1e-4
)
expect_true(attributes(out)$model_info$is_bernoulli)
})
test_that("check_predictions, glm, binomial", {
data(mtcars)
set.seed(1)
tot <- rep(10, 100)
suc <- rbinom(100, prob = 0.9, size = tot)
dat <- data.frame(tot, suc)
dat$prop <- suc / tot
mod1 <- glm(cbind(suc, tot - suc) ~ 1,
family = binomial,
data = dat
)
mod2 <- glm(prop ~ 1,
family = binomial,
data = dat,
weights = tot
)
mod3 <- glm(cbind(suc, tot) ~ 1,
family = binomial,
data = dat
)
mod4 <- glm(am ~ 1,
family = binomial,
data = mtcars
)
set.seed(1)
out1 <- check_predictions(mod1)
set.seed(1)
out2 <- check_predictions(mod2)
set.seed(1)
out3 <- check_predictions(mod3)
set.seed(1)
out4 <- check_predictions(mod4)
expect_equal(head(out1$sim_1), c(1, 0.9, 0.9, 0.8, 1, 0.8), tolerance = 1e-4)
expect_false(attributes(out1)$model_info$is_bernoulli)
expect_equal(head(out2$sim_1), c(1, 0.9, 0.9, 0.8, 1, 0.8), tolerance = 1e-4)
expect_false(attributes(out2)$model_info$is_bernoulli)
expect_equal(head(out3$sim_1), c(0.4, 0.42105, 0.47368, 0.61111, 0.4, 0.61111), tolerance = 1e-3)
expect_false(attributes(out3)$model_info$is_bernoulli)
expect_equal(head(out4$sim_1), c(0, 0, 0, 1, 0, 1), tolerance = 1e-4)
expect_true(attributes(out4)$model_info$is_bernoulli)
})
test_that("check_predictions, lm, ratio-response", {
skip_if_not_installed("lme4")
data(cbpp, package = "lme4")
model1 <- lm(I(incidence / size) ~ period, data = cbpp)
set.seed(123)
out <- check_predictions(model1)
expect_equal(
head(out$y),
c(0.14286, 0.25, 0.44444, 0, 0.13636, 0.05556),
ignore_attr = TRUE,
tolerance = 1e-4
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.