R/plot.binned_residuals.R

Defines functions plot.see_binned_residuals

#' @export
plot.see_binned_residuals <- function(
  x,
  linewidth = 0.7,
  size_point = 2.2,
  size_title = 12,
  size_axis_title = base_size,
  base_size = 10,
  colors = social_colors(c("blue", "red", "green")),
  show_smooth = FALSE,
  style = theme_lucid,
  ...
) {
  x$se.lo <- -x$se
  if (length(unique(x$group)) > 1L) {
    ltitle <- "Within error bounds"
  } else {
    ltitle <- NULL
  }
  dots <- list(...)

  # set defaults
  term <- attr(x, "term", exact = TRUE)
  if (is.null(dots[["show_dots"]])) {
    show_dots <- isTRUE(attr(x, "show_dots", exact = TRUE))
  } else {
    show_dots <- isTRUE(dots[["show_dots"]])
  }

  if (missing(style) && !is.null(attr(x, "theme"))) {
    theme_style <- unlist(strsplit(attr(x, "theme"), "::", fixed = TRUE))
    style <- get(theme_style[2], asNamespace(theme_style[1]))
  }
  theme_style <- style

  if (is.null(colors) || length(colors) != 3) {
    colors <- social_colors(c("blue", "red", "green"))
  }
  colors <- unname(colors)

  if (is.null(term)) {
    xtitle <- sprintf(
      "Estimated Probability of %s",
      attr(x, "resp_var", exact = TRUE)
    )
  } else {
    xtitle <- term
  }

  # show or hide dots - may be useful for large models with many observations
  if (!show_dots && insight::n_unique(x$group) > 1) {
    x$ybar[x$group == "yes"] <- NA
    x$CI_low[x$group == "yes"] <- NA
    x$CI_high[x$group == "yes"] <- NA
    # remove missing values, to avoid warning
    x <- x[!is.na(x$ybar), ]
  }

  p <- ggplot2::ggplot(data = x, ggplot2::aes(x = .data$xbar)) +
    ggplot2::geom_abline(slope = 0, intercept = 0, colour = "grey80")

  if (isTRUE(insight::check_if_installed("mgcv", quietly = TRUE)) && show_smooth) {
    p <- p +
      ggplot2::stat_smooth(
        ggplot2::aes(y = .data$ybar),
        method = "gam",
        se = FALSE,
        formula = y ~ s(x, bs = "tp"),
        colour = colors[3],
        linewidth = linewidth
      )
  }

  p <- p +
    ggplot2::geom_ribbon(
      ggplot2::aes(ymin = -Inf, ymax = .data$se.lo),
      alpha = 0.1,
      fill = "grey70"
    ) +
    ggplot2::geom_ribbon(
      ggplot2::aes(ymin = .data$se, ymax = Inf),
      alpha = 0.1,
      fill = "grey70"
    ) +
    ggplot2::geom_line(ggplot2::aes(y = .data$se), colour = "grey70") +
    ggplot2::geom_line(ggplot2::aes(y = .data$se.lo), colour = "grey70") +
    ggplot2::scale_color_manual(values = colors[2:1]) +
    ggplot2::labs(
      x = xtitle,
      y = "Average residual",
      colour = ltitle,
      title = "Binned Residuals",
      subtitle = "Points should be within error bounds"
    )

  if (is.null(term)) {
    p <- p + ggplot2::scale_x_continuous(labels = .percents)
  }

  if (is.null(ltitle)) {
    p <- p +
      ggplot2::geom_point(ggplot2::aes(y = .data$ybar), size = size_point) +
      ggplot2::geom_errorbar(
        ggplot2::aes(ymin = .data$CI_low, ymax = .data$CI_high),
        linewidth = linewidth,
        width = 0
      )
  } else {
    p <- p +
      ggplot2::geom_point(
        ggplot2::aes(y = .data$ybar, colour = .data$group),
        size = size_point
      ) +
      ggplot2::geom_errorbar(
        ggplot2::aes(
          ymin = .data$CI_low,
          ymax = .data$CI_high,
          colour = .data$group
        ),
        linewidth = linewidth,
        width = 0
      )
  }

  if (isTRUE(dots[["check_model"]])) {
    p <- p +
      theme_style(
        base_size = base_size,
        plot.title.space = 3,
        axis.title.space = 5,
        axis.title.size = size_axis_title,
        plot.title.size = size_title
      )
  }

  if (isTRUE(dots[["adjust_legend"]])) {
    p <- p +
      ggplot2::theme(
        legend.position = "bottom",
        legend.margin = ggplot2::margin(0, 0, 0, 0),
        legend.box.margin = ggplot2::margin(-5, -5, -5, -5)
      )
  }

  p
}
easystats/see documentation built on June 11, 2025, 11:49 a.m.