#________________________________________________
#Documentation
#' Control Parameters for Hurdle Model Count Data Regression
#'
#' @description Various parameters for fitting control of hurdle
#' model regression using \code{\link{hurdle}}.
#'
#' @param a shape parameter for gamma prior distributions.
#'
#' @param b rate parameter for gamma prior distributions.
#'
#' @param size size parameter for negative binomial likelihood distributions.
#'
#' @param beta.prior.mean mu parameter for normal prior distributions.
#'
#' @param beta.prior.sd standard deviation for normal prior distributions.
#'
#' @param beta.tune Markov-chain tuning for regression coefficient estimation.
#'
#' @param pars.tune Markov chain tuning for parameter estimation of 'extreme'
#' observations distribution.
#'
#' @param lam.start initial value for the poisson likelihood lambda parameter.
#'
#' @param mu.start initial value for the negative binomial or log normal
#' likelihood mu parameter.
#'
#' @param sigma.start initial value for the generalized pareto likelihood
#' sigma parameter.
#'
#' @param xi.start initial value for the generalized pareto likelihood
#' xi parameter.
#'
#' @return A list of all input values.
#'
#' @author
#' Taylor Trippe <\email{ttrippe@@luc.edu}> \cr
#' Earvin Balderama <\email{ebalderama@@luc.edu}>
#'
#' @seealso \code{\link{hurdle}}
#'
#'
#________________________________________________
#Source code
#Control parameters for hurdle() model-building
hurdle_control <- function(a = 1, b = 1, size = 1,
beta.prior.mean = 0, beta.prior.sd = 1000,
beta.tune = 1, pars.tune = 0.2,
lam.start = 1, mu.start = 1,
sigma.start = 1, xi.start = 1){
output <- list(a = a, b = b, size = size,
beta.prior.mean = beta.prior.mean, beta.prior.sd = beta.prior.sd,
pars.tune = pars.tune, beta.tune = beta.tune,
lam.start = lam.start, mu.start = mu.start,
sigma.start = sigma.start, xi.start = xi.start)
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.