graduated_optimisation | R Documentation |
Graduated Optimisation to solve the SLISE problem
graduated_optimisation(
alpha,
X,
Y,
epsilon,
beta = 0,
lambda1 = 0,
lambda2 = 0,
weight = NULL,
beta_max = 20/epsilon^2,
max_approx = 1.15,
max_iterations = 300,
beta_min_increase = beta_max * 5e-04,
debug = FALSE,
...
)
alpha |
Initial linear model (if NULL then OLS) |
X |
Data matrix |
Y |
Response vector |
epsilon |
Error tolerance |
beta |
Starting sigmoid steepness (default: 0 == convex problem) |
lambda1 |
L1 coefficient (default: 0) |
lambda2 |
L1 coefficient (default: 0) |
weight |
Weight vector (default: NULL == no weights) |
beta_max |
Stopping sigmoid steepness (default: 20 / epsilon^2) |
max_approx |
Approximation ratio when selecting the next beta (default: 1.15) |
max_iterations |
Maximum number of OWL-QN iterations (default: 300) |
beta_min_increase |
Minimum amount to increase beta (default: beta_max * 0.0005) |
debug |
Should debug statement be printed each iteration (default: FALSE) |
... |
Additional parameters to OWL-QN |
lbfgs object with beta (max) and the number of iteration steps
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.