slise.fit | R Documentation |
It is highly recommended that you normalise the data, either before using SLISE or by setting normalise = TRUE.
slise.fit(
X,
Y,
epsilon,
lambda1 = 0,
lambda2 = 0,
weight = NULL,
intercept = TRUE,
normalise = FALSE,
initialisation = slise_initialisation_candidates,
...
)
X |
Matrix of independent variables |
Y |
Vector of the response variable |
epsilon |
Error tolerance |
lambda1 |
L1 regularisation coefficient (default: 0) |
lambda2 |
L2 regularisation coefficient (default: 0) |
weight |
Optional weight vector (default: NULL) |
intercept |
Should an intercept be added (default: TRUE) |
normalise |
Preprocess X and Y by scaling, note that epsilon is not scaled (default: FALSE) |
initialisation |
Function that gives the initial alpha and beta, or a list containing the initial alpha and beta (default: slise_initialisation_candidates) |
... |
Arguments passed on to
|
slise.object
X <- matrix(rnorm(32), 8, 4)
Y <- rnorm(8)
model <- slise.fit(X, Y, (max(Y) - min(Y)) * 0.1)
predicted <- predict(model, X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.