slise.explain | R Documentation |
It is highly recommended that you normalise the data, either before using SLISE or by setting normalise = TRUE.
slise.explain(
X,
Y,
epsilon,
x,
y = NULL,
lambda1 = 0,
lambda2 = 0,
weight = NULL,
normalise = FALSE,
logit = FALSE,
initialisation = slise_initialisation_candidates,
...
)
X |
Matrix of independent variables |
Y |
Vector of the dependent variable |
epsilon |
Error tolerance |
x |
The sample to be explained (or index if y is null) |
y |
The prediction to be explained (default: NULL) |
lambda1 |
L1 regularisation coefficient (default: 0) |
lambda2 |
L2 regularisation coefficient (default: 0) |
weight |
Optional weight vector (default: NULL) |
normalise |
Preprocess X and Y by scaling, note that epsilon is not scaled (default: FALSE) |
logit |
Logit transform Y from probabilities to real values (default: FALSE) |
initialisation |
function that gives the initial alpha and beta, or a list containing the initial alpha and beta (default: slise_initialisation_candidates) |
... |
Arguments passed on to
|
slise.object
X <- matrix(rnorm(32), 8, 4)
Y <- runif(8, 0, 1)
expl <- slise.explain(X, Y, 0.1, 3, lambda1 = 0.01, logit = TRUE)
plot(expl, "bar", labels = c("class 1", "class 2"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.