# Tidy the environment prior to loading packages ----
# cmdlR::tidy()
rm(list = ls(all = TRUE))
# Load the packages ----
pkgs <- c("cmdlr")
invisible(lapply(pkgs, require, character.only = TRUE))
# Define the list of estimation options ----
control <- list(
optimizer = "bgw",
method = "BFGS",
cores = 4
)
# Define the list of model options ----
model_options <- list(
name = "ICLV ordered",
description = "An integrated choice and latent variable model with an ordered
measurement equation using the Apollo drug choice data",
id = "ID",
ct = "task",
choice = "best",
alt_avail = list(
alt1 = 1,
alt2 = 1,
alt3 = 1,
alt4 = 1
),
fixed = c("b_brand_Artemis", "b_country_USA", "b_char_standard"),
param = list(
b_brand_Artemis = 0,
b_brand_Novum = 0,
b_brand_BestValue = 0,
b_brand_Supermarket= 0,
b_brand_PainAway = 0,
b_country_CH = 0,
b_country_DK = 0,
b_country_USA = 0,
b_country_IND = 0,
b_country_RUS = 0,
b_country_BRA = 0,
b_char_standard = 0,
b_char_fast = 0,
b_char_double = 0,
b_risk = 0,
b_price = 0,
lambda = 1,
gamma_reg_user = 0,
gamma_university = 0,
gamma_age_50 = 0,
zeta_quality = 1,
zeta_ingredient = 1,
zeta_patent = 1,
zeta_dominance = 1,
tau_quality_1 =-2,
tau_quality_2 =-1,
tau_quality_3 = 1,
tau_quality_4 = 2,
tau_ingredients_1 =-2,
tau_ingredients_2 =-1,
tau_ingredients_3 = 1,
tau_ingredients_4 = 2,
tau_patent_1 =-2,
tau_patent_2 =-1,
tau_patent_3 = 1,
tau_patent_4 = 2,
tau_dominance_1 =-2,
tau_dominance_2 =-1,
tau_dominance_3 = 1,
tau_dominance_4 = 2
),
mixing = TRUE,
n_draws = 100,
draws_type = "standard-halton",
rpar = list(
eta = "normal"
)
)
# Likelihood function - returns the probability of the sequence of choices ----
ll <- function(param) {
# Define a vector for sub-setting to one row per respondent
subset_index <- task == 1
# Define the latent variable(s) ----
lv <- gamma_reg_user * regular_user + gamma_university * university_educated + gamma_age_50 * over_50 + eta
lv_sub <- lv[subset_index, ]
# Calculate the likelihood of the indicator(s) ----
pr_indicators <- list(
indicator_quality = ordered_logit(attitude_quality[subset_index], zeta_quality * lv_sub, c(tau_quality_1, tau_quality_2, tau_quality_3, tau_quality_4)),
indicator_ingredients = ordered_logit(attitude_ingredients[subset_index], zeta_ingredient * lv_sub, c(tau_ingredients_1, tau_ingredients_2, tau_ingredients_3, tau_ingredients_4)),
indicator_patent = ordered_logit(attitude_patent[subset_index], zeta_patent * lv_sub, c(tau_patent_1, tau_patent_2, tau_patent_3, tau_patent_4)),
indicator_dominance = ordered_logit(attitude_dominance[subset_index], zeta_dominance * lv_sub, c(tau_dominance_1, tau_dominance_2, tau_dominance_3, tau_dominance_4))
)
pr_indicators <- Reduce("*", pr_indicators)
# Define the list of utilities ----
V <- list(
alt1 =
b_brand_Artemis * (brand_1 == "Artemis") +
b_brand_Novum * (brand_1 == "Novum") +
b_country_CH * (country_1 == "Switzerland") +
b_country_DK * (country_1 == "Denmark") +
b_country_USA * (country_1 == "USA") +
b_char_standard * (char_1 == "standard") +
b_char_fast * (char_1 == "fast acting") +
b_char_double * (char_1 == "double strength") +
b_risk * side_effects_1 +
b_price * price_1 +
lambda * lv,
alt2 =
b_brand_Artemis * (brand_2 == "Artemis") +
b_brand_Novum * (brand_2 == "Novum") +
b_country_CH * (country_2 == "Switzerland") +
b_country_DK * (country_2 == "Denmark") +
b_country_USA * (country_2 == "USA") +
b_char_standard * (char_2 == "standard") +
b_char_fast * (char_2 == "fast acting") +
b_char_double * (char_2 == "double strength") +
b_risk * side_effects_2 +
b_price * price_2 +
lambda * lv,
alt3 =
b_brand_BestValue * (brand_3 == "BestValue") +
b_brand_Supermarket * (brand_3 == "Supermarket") +
b_brand_PainAway * (brand_3 == "PainAway") +
b_country_USA * (country_3 == "USA") +
b_country_IND * (country_3 == "India") +
b_country_RUS * (country_3 == "Russia") +
b_country_BRA * (country_3 == "Brazil") +
b_char_standard * (char_3 == "standard") +
b_char_fast * (char_3 == "fast acting") +
b_risk * side_effects_3 +
b_price * price_3,
alt4 =
b_brand_BestValue * (brand_4 == "BestValue") +
b_brand_Supermarket * (brand_4 == "Supermarket") +
b_brand_PainAway * (brand_4 == "PainAway") +
b_country_USA * (country_4 == "USA") +
b_country_IND * (country_4 == "India") +
b_country_RUS * (country_4 == "Russia") +
b_country_BRA * (country_4 == "Brazil") +
b_char_standard * (char_4 == "standard") +
b_char_fast * (char_4 == "fast acting") +
b_risk * side_effects_4 +
b_price * price_4
)
# Calculate the probabilities ----
# Get the utility of the chosen alternative and subtract it from all utilities
v_chosen <- Reduce("+", lapply(seq_along(V), function(j) {
V[[j]] * (choice_var == j)
}))
V <- lapply(V, function(v) v - v_chosen)
# Calculate the exponent and sum of utilities
exp_v <- lapply(V, function(v) exp(v))
exp_v <- mapply("*", exp_v, alt_avail, SIMPLIFY = FALSE)
sum_v <- Reduce("+", exp_v)
# Calculate the probability of the chosen alt
chosen_alt_available <- Reduce("+", lapply(seq_along(V), function(j) {
(choice_var == j) * alt_avail[[j]]
}))
pr_chosen <- chosen_alt_available / sum_v
# Combine the model components.
pr_chosen <- pr_chosen
# Calculate the product over the panel by reshaping to have rows equal to S
pr_chosen <- matrix(pr_chosen, nrow = n_ct)
# If the data is padded, we need to insert ones before taking the product
index_na <- is.na(pr_chosen)
pr_chosen[index_na][!is.nan(pr_chosen[index_na])] <- 1
# Calculate the probability of the sequence
pr_seq <- Rfast::colprods(pr_chosen)
# Reshape the matrix such that each row is an individual and average over draws
pr_seq <- matrix(pr_seq, nrow = n_id)
# Multiply with the matrix of indicator likelihoods. NOTE: This will not work
# correctly if indicator observations are at the choice task level.
pr_seq <- pr_seq * pr_indicators
pr_seq <- Rfast::rowmeans(pr_seq)
# ll <- log(pr_seq)
ll <- pr_seq
# Return the likelihood value
return(ll)
}
# Load and manipulate the data ----
db <- apollo::apollo_drugChoiceData
# Prepare estimation environment ----
estim_env <- prepare(ll, db, model_options, control)
# Estimate the model ----
model <- estimate(ll, estim_env, model_options, control)
# Get a summary of the results ----
summary(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.