# Tidy the environment prior to loading packages ----
# cmdlR::tidy()
rm(list = ls(all = TRUE))
# Load the packages ----
pkgs <- c("cmdlr")
invisible(lapply(pkgs, require, character.only = TRUE))
# Define the list of estimation options ----
control <- list(
optimizer = "maxlik",
method = "BFGS"
)
# Define the list of model options ----
model_options <- list(
name = "MNL model",
description = "A simple MNL model using the Apollo dataset 'mode choice'.",
id = "ID",
ct = "SP_task",
choice = "choice",
alt_avail = list(
alt1 = "av_car",
alt2 = "av_bus",
alt3 = "av_air",
alt4 = "av_rail"
),
fixed = c("asc_car", "b_no_frills"),
param = list(
asc_car = 0,
asc_bus = 0,
asc_air = 0,
asc_rail = 0,
b_tt_car = 0,
b_tt_bus = 0,
b_tt_air = 0,
b_tt_rail = 0,
b_access = 0,
b_cost = 0,
b_no_frills = 0,
b_wifi = 0,
b_food = 0
)
)
# Likelihood function - returns the probability of the sequence of choices ----
ll <- function(param) {
# Define the list of utilities ----
V <- list(
alt1 = asc_car + b_tt_car * time_car + b_cost * cost_car,
alt2 = asc_bus + b_tt_bus * time_bus + b_access * access_bus + b_cost * cost_bus,
alt3 = asc_air + b_tt_air * time_air + b_access * access_air + b_cost * cost_air + b_no_frills * (service_air == 1) + b_wifi * (service_air == 2) + b_food * (service_air == 3),
alt4 = asc_rail + b_tt_rail * time_rail + b_access * access_rail + b_cost * cost_rail + b_no_frills * (service_rail == 1) + b_wifi * (service_rail == 2) + b_food * (service_rail == 3)
)
# Calculate the probabilities ----
# Get the utility of the chosen alternative and subtract it from all utilities
v_chosen <- Reduce("+", lapply(seq_along(V), function(j) {
V[[j]] * (choice_var == j)
}))
V <- lapply(V, function(v) v - v_chosen)
# Calculate the exponent and sum of utilities
exp_v <- lapply(V, function(v) exp(v))
# Restrict the utility of unavailable alternatives to 0
exp_v <- mapply("*", exp_v, alt_avail, SIMPLIFY = FALSE)
sum_v <- Reduce("+", exp_v)
# Calculate the probability of the chosen alt
# Returns zero if a non-available alternative is chosen
chosen_alt_available <- Reduce("+", lapply(seq_along(V), function(j) {
(choice_var == j) * alt_avail[[j]]
}))
pr_chosen <- chosen_alt_available / sum_v
# Calculate the product over the panel by reshaping to have rows equal to S
pr_chosen <- matrix(pr_chosen, nrow = n_ct)
# If the data is padded, we need to insert ones before taking the product
index_na <- is.na(pr_chosen)
pr_chosen[index_na][!is.nan(pr_chosen[index_na])] <- 1
# Calculate the probability of the sequence
pr_seq <- Rfast::colprods(pr_chosen)
# Return the likelihood value
ll <- log(pr_seq)
# ll <- pr_seq
# attributes(ll) <- list(
# pr_chosen = pr_chosen
# )
return(ll)
}
# Load and manipulate the data ----
db <- apollo::apollo_modeChoiceData
db <- db[db$SP == 1, ]
# Prepare estimation environment ----
estim_env <- prepare(ll, db, model_options, control)
# Search for starting values ----
start_values <- search_start_values(ll,
estim_env,
model_options,
control,
type = "simple")
model_options[["param"]] <- as.list(start_values[1, ])
# Estimate the model ----
model <- estimate(ll, estim_env, model_options, control)
# Get a summary of the results ----
summary(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.