any_constant | Check for constant columns |
as.data.tree.linadleaves | Convert 'linadleaves' to 'data.tree' object |
as.data.tree.rpart | Convert 'rpart' rules to 'data.tree' object |
as.data.tree.shyoptleaves | Convert 'shyoptleaves' to 'data.tree' object |
auc | Area under the ROC Curve |
auc_pairs | Area under the Curve by pairwise concordance |
bacc | Balanced Accuracy |
betas.lihad | Extract coefficients from Additive Tree leaves |
bias_variance | Bias-Variance Decomposition |
binmat2vec | Binary matrix times character vector |
boost | Boost an 'rtemis' learner for regression |
bootstrap | Bootstrap Resampling |
brier_score | Brier Score |
calibrate | Calibrate predicted probabilities using GAM |
calibrate_cv | Calibrate cross-validated model |
cartLiteBoostTV | Boost an 'rtemis' learner for regression |
catrange | Print range of continuous variable |
catsize | Print Size |
c_CMeans | Fuzzy C-means Clustering |
c_DBSCAN | Density-based spatial clustering of applications with noise |
c_EMC | Expectation Maximization Clustering |
c_H2OKMeans | K-Means Clustering with H2O |
c_HARDCL | Clustering by Hard Competitive Learning |
check_data | Check Data |
check_files | Check file(s) exist |
checkpoint_earlystop | Early stopping check |
chill | Chill |
c_HOPACH | Hierarchical Ordered Partitioning and Collapsing Hybrid |
c_KMeans | K-means Clustering |
class_error | Classification Error |
class_imbalance | Class Imbalance |
clean_colnames | Clean column names |
clean_names | Clean names |
clust | Clustering with 'rtemis' |
c_MeanShift | Mean Shift Clustering |
c_NGAS | Neural Gas Clustering |
coef.lihad | Extract coefficients from Hybrid Additive Tree leaves |
col2grayscale | Color to Grayscale |
col2hex | Convert R color to hexadecimal code |
colMax | Collapse data.frame to vector by getting column max |
colorAdjust | Adjust HSV Color |
color_fade | Fade color towards target |
colorGrad | Color Gradient |
colorgradient.x | Color gradient for continuous variable |
colorGrad.x | Color gradient for continuous variable |
color_invertRGB | Invert Color in RGB space |
color_mean | Average colors |
colorMix | Create an alternating sequence of graded colors |
colorOp | Simple Color Operations |
color_order | Order colors |
color_separate | Separate colors |
color_sqdist | Squared Color Distance |
cols2list | Convert data frame columns to list elements |
c_PAM | Partitioning Around Medoids |
c_PAMK | Partitioning Around Medoids with k Estimation |
create_config | Create rtemis configuration file |
crules | Combine rules |
c_SPEC | Spectral Clustering |
dat2bsplinemat | B-Spline matrix from dataset |
dat2poly | Create n-degree polynomial from data frame |
date2factor | Date to factor time bin |
date2ym | Date to year-month factor |
date2yq | Date to year-quarter factor |
ddb_collect | Collect a lazy-read duckdb table |
ddb_data | Read CSV using DuckDB |
ddSci | Format Numbers for Printing |
decom | Matrix Decomposition with 'rtemis' |
dependency_check | 'rtemis' internal: Dependencies check |
desaturate | Pastelify a color (make a color more pastel) |
describe | Describe generic |
df_movecolumn | Move data frame column |
d_H2OAE | Autoencoder using H2O |
d_H2OGLRM | Generalized Low-Rank Models (GLRM) on H2O |
d_ICA | Independent Component Analysis |
d_Isomap | Isomap |
distillTreeRules | Distill rules from trained RF and GBM learners |
d_KPCA | Kernel Principal Component Analysis |
d_LLE | Locally Linear Embedding |
d_MDS | Multidimensional Scaling |
d_NMF | Non-negative Matrix Factorization (NMF) |
d_PCA | Principal Component Analysis |
dplot3_addtree | Plot AddTree trees |
dplot3_bar | Interactive Barplots |
dplot3_box | Interactive Boxplots & Violin plots |
dplot3_calibration | Draw calibration plot |
dplot3_cart | Plot 'rpart' decision trees |
dplot3_conf | Plot confusion matrix |
dplot3_fit | True vs. Predicted Plot |
dplot3_graphd3 | Plot graph using 'networkD3' |
dplot3_graphjs | Plot network using 'threejs::graphjs' |
dplot3_heatmap | Interactive Heatmaps |
dplot3_leaflet | Plot interactive choropleth map using 'leaflet' |
dplot3_linad | Plot a Linear Additive Tree trained by s_LINAD using... |
dplot3_pie | Interactive Pie Chart |
dplot3_protein | Plot the amino acid sequence with annotations |
dplot3_pvals | Barplot p-values using dplot3_bar |
dplot3_spectrogram | Interactive Spectrogram |
dplot3_table | Simple HTML table |
dplot3_ts | Interactive Timeseries Plots |
dplot3_varimp | Interactive Variable Importance Plot |
dplot3_volcano | Volcano Plot |
dplot3_x | Interactive Univariate Plots |
dplot3_xt | Plot timeseries data |
dplot3_xy | Interactive Scatter Plots |
dplot3_xyz | Interactive 3D Plots |
drange | Set Dynamic Range |
d_SPCA | Sparse Principal Component Analysis |
d_SVD | Singular Value Decomposition |
dt_check_unique | Check if all levels in a column are unique |
dt_describe | Describe data.table |
dt_get_column_attr | Tabulate column attributes |
dt_get_duplicates | Get index of duplicate values |
dt_get_factor_levels | Get factor levels from data.table |
dt_index_attr | Index columns by attribute name & value |
dt_inspect_type | Inspect column types |
dt_keybin_reshape | Long to wide key-value reshaping |
dt_merge | Merge data.tables |
dt_names_by_attr | List column names by attribute |
dt_names_by_class | List column names by class |
dt_pctmatch | Get N and percent match of values between two columns of two... |
dt_pctmissing | Get percent of missing values from every column |
dt_set_autotypes | Set column types automatically |
dt_set_clean_all | Clean column names and factor levels in-place |
dt_set_cleanfactorlevels | Clean factor levels of data.table in-place |
dt_set_logical2factor | Convert data.table logical columns to factor with custom... |
d_TSNE | t-distributed Stochastic Neighbor Embedding |
d_UMAP | Uniform Manifold Approximation and Projection (UMAP) |
earlystop | Early stopping |
error | Error functions |
expand.boost | Expand boosting series |
explain | Explain individual-level model predictions |
f1 | F1 score |
factor_harmonize | Factor harmonize |
factor_NA2missing | Factor NA to "missing" level |
factoryze | Factor Analysis |
fct_describe | Decribe factor |
format.call | Format method for 'call' objects |
formatLightRules | Format LightRuleFit rules |
formatRules | Format rules |
fwhm2sigma | FWHM to Sigma |
get_loaded_pkg_version | Get version of all loaded packages (namespaces) |
get_mode | Get the mode of a factor or integer |
getnames | Get names by string matching |
get-names | Get factor/numeric/logical/character names from... |
getnamesandtypes | Get data.frame names and types |
get_rules | Get RuleFit rules |
get_vars_from_rules | Extract variable names from rules |
ggtheme_dark | 'rtemis' 'ggplot2' dark theme |
ggtheme_light | 'rtemis' 'ggplot2' light theme |
glmLite | Bare bones decision tree derived from 'rpart' |
gmean | Geometric mean |
gp | Bayesian Gaussian Processes [R] |
grapes-BC-grapes | Binary matrix times character vector |
graph_node_metrics | Node-wise (i.e. vertex-wise) graph metrics |
gridCheck | 'rtemis' internal: Grid check |
gtTable | Greater-than Table |
htest | Basic Bivariate Hypothesis Testing and Plotting |
inherits_check | Test class of object |
inherits_test | Check class of object |
inspect_type | Inspect character and factor vector |
invlogit | Inverse Logit |
is_check | Check type of object |
is_constant | Check if vector is constant |
is_discrete | Check if variable is discrete (factor or integer) |
is_test | Test type of object |
kfold | K-fold Resampling |
labelify | Format text for label printing |
lincoef | Linear Model Coefficients |
list2csv | Write list elements to CSV files |
logistic | Logistic function |
logit | Logit transform |
logloss | Log Loss for a binary classifier |
loocv | Leave-one-out Resampling |
lotri2edgeList | Connectivity Matrix to Edge List |
lsapply | 'lsapply' |
make_key | Make key from data.table id - description columns |
massGAM | Mass-univariate GAM Analysis |
massGLAM | Mass-univariate GLM Analysis |
massGLM | Mass-univariate GLM Analysis |
massUni | Mass-univariate Analysis |
matchcases | Match cases by covariates |
mergelongtreatment | Merge panel data treatment and outcome data |
meta_mod | Meta Models for Regression (Model Stacking) |
mgetnames | Get names by string matching multiple patterns |
mhist | Histograms |
mlegend | Add legend to 'mplot3' plot |
mod_error | Error Metrics for Supervised Learning |
mplot3_adsr | 'mplot3': ADSR Plot |
mplot3_bar | 'mplot3': Barplot |
mplot3_box | 'mplot3': Boxplot |
mplot3_conf | Plot confusion matrix |
mplot3_confbin | Plot extended confusion matrix for binary classification |
mplot3_decision | 'mplot3': Decision boundaries |
mplot3_fit | True vs. Fitted plot |
mplot3_fret | 'mplot3': Guitar Fretboard |
mplot3_graph | Plot 'igraph' networks |
mplot3_harmonograph | Plot a harmonograph |
mplot3_heatmap | 'mplot3' Heatmap ('image'; modified 'heatmap') |
mplot3_img | Draw image (False color 2D) |
mplot3_laterality | Laterality scatter plot |
mplot3_lolli | 'mplot3' Lollipop Plot |
mplot3_missing | Plot missingness |
mplot3_mosaic | Mosaic plot |
mplot3_pr | 'mplot3' Precision Recall curves |
mplot3_prp | Plot CART Decision Tree |
mplot3_res | 'mplot3' Plot 'resample' |
mplot3_roc | 'mplot3' ROC curves |
mplot3_surv | 'mplot3': Survival Plots |
mplot3_survfit | 'mplot3': Plot 'survfit' objects |
mplot3_varimp | 'mplot3': Variable Importance |
mplot3_x | 'mplot3': Univariate plots: index, histogram, density,... |
mplot3_xy | 'mplot3': XY Scatter and line plots |
mplot3_xym | Scatter plot with marginal density and/or histogram |
mplot_AGGTEobj | Plot AGGTEobj object |
mplot_hsv | Plot HSV color range |
mplot_raster | Plot Array as Raster Image |
multigplot | Multipanel *ggplot2* plots |
nCr | n Choose r |
nlareg | 'rtemis' internal: NonLinear Activation regression (NLAreg) |
nunique_perfeat | Number of unique values per feature |
oddsratio | Calculate odds ratio for a 2x2 contingency table |
oddsratiotable | Odds ratio table from logistic regression |
oneHot | One hot encoding |
onehot2factor | Convert one-hot encoded matrix to factor |
palettize | Palettize colors |
permute | Create permutations |
pfread | fread delimited file in parts |
plotly.heat | Heatmap with 'plotly' |
plot.massGAM | Plot 'massGAM' object |
plot.massGLM | Plot 'massGLM' object |
plot.resample | 'plot' method for 'resample' object |
plot.rtModCVCalibration | Plot 'rtModCVCalibration' object |
plot.rtTest | Plot 'rtTest' object |
precision | Precision (aka PPV) |
predict.addtree | Predict Method for MediBoost Model |
predict.boost | Predict method for 'boost' object |
predict.cartLite | Predict method for 'cartLite' object |
predict.cartLiteBoostTV | Predict method for 'cartLiteBoostTV' object |
predict.glmLite | Predict method for 'glmLite' object |
predict.glmLiteBoostTV | Predict method for 'glmLiteBoostTV' object |
predict.hytboost | Predict method for 'hytboost' object |
predict.hytboostnow | Predict method for 'hytboostnow' object |
predict.hytreenow | Predict method for 'hytreeLite' object |
predict.hytreew | Predict method for 'hytreew' object |
predict.LightRuleFit | 'predict' method for 'LightRuleFit' object |
predict.lihad | Predict method for 'lihad' object |
predict.linadleaves | Predict method for 'linadleaves' object |
predict.nlareg | Predict method for 'nlareg' object |
predict.nullmod | 'rtemis' internal: predict for an object of class 'nullmod' |
predict.rtBSplines | Predict S3 method for 'rtBSplines' |
predict.rtModCVCalibration | Predict using calibrated model |
predict.rtTLS | 'predict.rtTLS': 'predict' method for 'rtTLS' object |
predict.rulefit | 'predict' method for 'rulefit' object |
preorderlgb | Preorder Traversal of LightGBM Tree |
preprocess | Data preprocessing |
preprocess_ | Data preprocessing (in-place) |
present | Present elevate models |
present_gridsearch | Present gridsearch results |
previewcolor | Preview color v2.0 |
print.addtree | Print method for 'addtree' object created using s_AddTree |
print.boost | Print method for boost object |
print.cartLiteBoostTV | Print method for cartLiteBoostTV object |
print.CheckData | Print 'CheckData' object |
print.class_error | Print class_error |
print.glmLiteBoostTV | Print method for 'glmLiteBoostTV' object |
print.gridSearch | 'print' method for 'gridSearch' object |
print.hytboost | Print method for 'hytboost' object |
print.hytboostnow | Print method for 'boost' object |
print.lihad | Print method for 'lihad' object |
print.linadleaves | Print method for 'linadleaves' object |
print.massGAM | 'print'massGAM object |
print.massGLM | 'print'massGLM object |
print.regError | Print 'regError' object |
print.resample | 'print' method for resample object |
print.rtBiasVariance | Print method for bias_variance |
print.rtTLS | 'print.rtTLS': 'print' method for 'rtTLS' object |
print.surv_error | Print surv_error |
prune.addtree | Prune AddTree tree |
psd | Population Standard Deviation |
qstat | SGE qstat |
read | Read tabular data from a variety of formats |
read_config | Read rtemis configuration file |
recycle | Recycle values of vector to match length of target |
reg_error | Regression Error Metrics |
relu | ReLU - Rectified Linear Unit |
resample | Resampling methods |
reverseLevels | Reverse factor levels |
revfactorlevels | Reverse factor level order |
rfVarSelect | Variable Selection by Random Forest |
rnormmat | Random Normal Matrix |
rowMax | Collapse data.frame to vector by getting row max |
rsd | Coefficient of Variation (Relative standard deviation) |
rsq | R-squared |
rstudio_theme_rtemis | Apply rtemis theme for RStudio |
rtClust-methods | rtClust S3 methods |
rtDecom-methods | 'print.rtDecom': 'print' method for 'rtDecom' object |
rtemis_init | Initialize parallel processing and progress reporting |
rtemis-package | 'rtemis': Machine Learning and Visualization |
rtemis_palette | Access rtemis palette colors |
rtInitProjectDir | Initialize Project Directory |
rtlayout | Create multipanel plots with the 'mplot3' family |
rtMeta-methods | rtMeta S3 methods |
rtModBag-methods | rtModBag S3 methods |
rtModClass-class | 'rtemis' Classification Model Class |
rtModCV-methods | S3 methods for 'rtModCV' class that differ from those of the... |
rtModLite-methods | rtModLite S3 methods |
rtModLog-class | 'rtemis' Supervised Model Log Class |
rtModLogger-class | 'rtemis' model logger |
rtMod-methods | 'rtMod' S3 methods |
rtpalette | 'rtemis' Color Palettes |
rtPalettes | UCSF Colors |
rt_reactable | View table using reactable |
rtROC | Build an ROC curve |
rt_save | Write 'rtemis' model to RDS file |
rtset | 'rtemis' default-setting functions |
rtversion | Get rtemis and OS version info |
rtXDecom-class | R6 class for 'rtemis' cross-decompositions |
ruleDist | Rule distance |
rules2medmod | Convert rules from cutoffs to median/mode and range |
runifmat | Random Uniform Matrix |
s_AdaBoost | Adaboost Binary Classifier C |
s_AddTree | Additive Tree: Tree-Structured Boosting C |
savePMML | Save rtemis model to PMML file |
s_BART | Bayesian Additive Regression Trees (C, R) |
s_BayesGLM | Bayesian GLM |
s_BRUTO | Projection Pursuit Regression (BRUTO) [R] |
s_C50 | C5.0 Decision Trees and Rule-Based Models C |
s_CART | Classification and Regression Trees [C, R, S] |
s_CTree | Conditional Inference Trees [C, R, S] |
se | Extract standard error of fit from rtemis model |
select_clust | Select 'rtemis' Clusterer |
select_decom | Select 'rtemis' Decomposer |
selectiter | Select N of learning iterations based on loss |
select_learn | Select 'rtemis' Learner |
sensitivity | Sensitivity |
seql | Sequence generation with automatic cycling |
setdiffsym | Symmetric Set Difference |
setup.bag.resample | Set resample parameters for 'rtMod' bagging |
setup.color | Set colorGrad parameters |
setup.cv.resample | 'setup.cv.resample': resample defaults for cross-validation |
setup.decompose | Set decomposition parameters for train_cv '.decompose'... |
setup.earlystop | Set earlystop parameters |
setup.GBM | Set s_GBM parameters |
setup.grid.resample | Set resample parameters for 'gridSearchLearn' |
setup.LightRuleFit | Set s_LightRuleFit parameters |
setup.LIHAD | Set s_LIHAD parameters |
setup.lincoef | Set lincoef parameters |
setup.MARS | Set s_MARS parameters |
setup.meta.resample | Set resample parameters for meta model training |
setup.preprocess | Set preprocess parameters for train_cv '.preprocess' argument |
setup.Ranger | Set s_Ranger parameters |
setup.resample | Set resample settings |
s_EVTree | Evolutionary Learning of Globally Optimal Trees (C, R) |
s_GAM | Generalized Additive Model (GAM) (C, R) |
s_GBM | Gradient Boosting Machine [C, R, S] |
sge_submit | Submit expression to SGE grid |
s_GLM | Generalized Linear Model (C, R) |
s_GLMNET | GLM with Elastic Net Regularization [C, R, S] |
s_GLMTree | Generalized Linear Model Tree [R] |
s_GLS | Generalized Least Squares [R] |
s_H2ODL | Deep Learning on H2O (C, R) |
s_H2OGBM | Gradient Boosting Machine on H2O (C, R) |
s_H2ORF | Random Forest on H2O (C, R) |
s_HAL | Highly Adaptive LASSO [C, R, S] |
sigmoid | Sigmoid function |
size | Size of matrix or vector |
s_KNN | k-Nearest Neighbors Classification and Regression (C, R) |
s_LDA | Linear Discriminant Analysis |
s_LightCART | LightCART Classification and Regression (C, R) |
s_LightGBM | LightGBM Classification and Regression (C, R) |
s_LightRF | Random Forest using LightGBM |
s_LightRuleFit | RuleFit with LightGBM (C, R) |
s_LIHAD | The Linear Hard Hybrid Tree: Hard Additive Tree (no gamma)... |
s_LIHADBoost | Boosting of Linear Hard Additive Trees [R] |
s_LINAD | Linear Additive Tree (C, R) |
s_LINOA | Linear Optimized Additive Tree (C, R) |
s_LM | Linear model |
s_LMTree | Linear Model Tree [R] |
s_LOESS | Local Polynomial Regression (LOESS) [R] |
s_LOGISTIC | Logistic Regression |
s_MARS | Multivariate adaptive regression splines (MARS) (C, R) |
s_MLRF | Spark MLlib Random Forest (C, R) |
s_MULTINOM | Multinomial Logistic Regression |
s_NBayes | Naive Bayes Classifier C |
s_NLA | NonLinear Activation unit Regression (NLA) [R] |
s_NLS | Nonlinear Least Squares (NLS) [R] |
s_NW | Nadaraya-Watson kernel regression [R] |
softmax | Softmax function |
softplus | Softplus function |
sortedlines | lines, but sorted |
sparsernorm | Sparse rnorm |
sparseVectorSummary | Sparseness and pairwise correlation of vectors |
sparsify | Sparsify a vector |
specificity | Specificity |
s_POLY | Polynomial Regression |
s_PolyMARS | Multivariate adaptive polynomial spline regression (POLYMARS)... |
s_PPR | Projection Pursuit Regression (PPR) [R] |
s_PSurv | Parametric Survival Regression [S] |
s_QDA | Quadratic Discriminant Analysis C |
s_QRNN | Quantile Regression Neural Network [R] |
s_Ranger | Random Forest Classification and Regression (C, R) |
s_RF | Random Forest Classification and Regression (C, R) |
s_RFSRC | Random Forest for Classification, Regression, and Survival... |
s_RLM | Robust linear model |
s_RuleFit | Rulefit [C, R] |
s_SDA | Sparse Linear Discriminant Analysis |
s_SGD | Stochastic Gradient Descent (SGD) (C, R) |
s_SPLS | Sparse Partial Least Squares Regression (C, R) |
s_SVM | Support Vector Machines (C, R) |
stderror | Standard Error of the Mean |
s_TFN | Feedforward Neural Network with 'tensorflow' (C, R) |
s_TLS | Total Least Squares Regression [R] |
strata2factor | Convert 'survfit' object's strata to a factor |
strat.boot | Stratified Bootstrap Resampling |
strat.sub | Resample using Stratified Subsamples |
strict | Strict assignment by class or type |
strng | String formatting utilities |
summarize | Summarize numeric variables |
summary.massGAM | 'massGAM' object summary |
summary.massGLM | 'massGLM' object summary |
surv_error | Survival Analysis Metrics |
svd1 | 'rtemis-internals' Project Variables to First Eigenvector |
s_XGBoost | XGBoost Classification and Regression (C, R) |
s_XRF | XGBoost Random Forest Classification and Regression (C, R) |
synth_multimodal | Create "Multimodal" Synthetic Data |
synth_reg_data | Synthesize Simple Regression Data |
table1 | Table 1 |
theme | Themes for 'mplot3' and 'dplot3' functions |
themes | Print available rtemis themes |
timeProc | Time a process |
tohtml | Generate 'CheckData' object description in HTML |
train_cv | Tune, Train, and Test an 'rtemis' Learner by Nested... |
tunable | Print tunable hyperparameters for a supervised learning... |
typeset | Set type of columns |
uci_heart_failure | UCI Heart Failure Data |
uniprot_get | Get protein sequence from UniProt |
uniquevalsperfeat | Unique values per feature |
winsorize | Winsorize vector |
x_CCA | Sparse Canonical Correlation Analysis (CCA) |
xlsx2list | Read all sheets of an XLSX file into a list |
xselect_decom | Select 'rtemis' cross-decomposer |
xtdescribe | Describe longitudinal dataset |
zip2longlat | Get Longitude and Lattitude for zip code(s) |
zipdist | Get distance between pairs of zip codes |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.