setup.LightRuleFit | R Documentation |
Sets parameters for the GBM and GLMNET (LASSO) steps of s_LightRuleFit
setup.LightRuleFit(
n_trees = 200,
num_leaves = 32L,
max_depth = 3,
learning_rate = 0.1,
subsample = 0.666,
subsample_freq = 1L,
lambda_l1 = 0,
lambda_l2 = 0,
objective = NULL,
extra.lgbm.params = NULL,
lightgbm.ifw = TRUE,
lightgbm.resample.params = setup.resample("kfold", 5),
glmnet.ifw = TRUE,
importance = FALSE,
alpha = 1,
lambda = NULL,
glmnet.resample.params = setup.resample("kfold", 5)
)
num_leaves |
Integer: [gS] Maximum tree leaves for base learners. |
max_depth |
Integer: [gS] Maximum tree depth for base learners, <=0 means no limit. |
learning_rate |
Numeric: [gS] Boosting learning rate |
subsample |
Numeric: [gS] Subsample ratio of the training set. |
subsample_freq |
Integer: Subsample every this many iterations |
lambda_l1 |
Numeric: [gS] L1 regularization term |
lambda_l2 |
Numeric: [gS] L2 regularization term |
objective |
(Default = NULL) |
lightgbm.ifw |
Logical: Passed to s_LightGBM's |
glmnet.ifw |
Logical: Passed to s_GLMNET's |
importance |
Logical: If |
alpha |
[gS] Float [0, 1]: The elasticnet mixing parameter:
|
lambda |
[gS] Float vector: Best left to NULL, |
ED Gennatas
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.