setup.LightRuleFit: Set s_LightRuleFit parameters

View source: R/setup.R

setup.LightRuleFitR Documentation

Set s_LightRuleFit parameters

Description

Sets parameters for the GBM and GLMNET (LASSO) steps of s_LightRuleFit

Usage

setup.LightRuleFit(
  n_trees = 200,
  num_leaves = 32L,
  max_depth = 3,
  learning_rate = 0.1,
  subsample = 0.666,
  subsample_freq = 1L,
  lambda_l1 = 0,
  lambda_l2 = 0,
  objective = NULL,
  extra.lgbm.params = NULL,
  lightgbm.ifw = TRUE,
  lightgbm.resample.params = setup.resample("kfold", 5),
  glmnet.ifw = TRUE,
  importance = FALSE,
  alpha = 1,
  lambda = NULL,
  glmnet.resample.params = setup.resample("kfold", 5)
)

Arguments

num_leaves

Integer: [gS] Maximum tree leaves for base learners.

max_depth

Integer: [gS] Maximum tree depth for base learners, <=0 means no limit.

learning_rate

Numeric: [gS] Boosting learning rate

subsample

Numeric: [gS] Subsample ratio of the training set.

subsample_freq

Integer: Subsample every this many iterations

lambda_l1

Numeric: [gS] L1 regularization term

lambda_l2

Numeric: [gS] L2 regularization term

objective

(Default = NULL)

lightgbm.ifw

Logical: Passed to s_LightGBM's ifw argument

glmnet.ifw

Logical: Passed to s_GLMNET's ifw argument

importance

Logical: If TRUE, calculate variable importance

alpha

[gS] Float [0, 1]: The elasticnet mixing parameter: a = 0 is the ridge penalty, a = 1 is the lasso penalty

lambda

[gS] Float vector: Best left to NULL, cv.glmnet will compute its own lambda sequence

Author(s)

ED Gennatas


egenn/rtemis documentation built on Oct. 28, 2024, 6:30 a.m.