setup.Ranger: Set s_Ranger parameters

View source: R/setup.R

setup.RangerR Documentation

Set s_Ranger parameters

Description

Set s_Ranger parameters

Usage

setup.Ranger(
  n.trees = 1000,
  min.node.size = 1,
  mtry = NULL,
  grid.resample.params = setup.resample("kfold", 5),
  ifw = TRUE,
  upsample = FALSE,
  downsample = FALSE,
  resample.seed = NULL,
  ...
)

Arguments

n.trees

Integer: Number of trees to grow. Default = 1000

min.node.size

[gS] Integer: Minimum node size

mtry

[gS] Integer: Number of features sampled randomly at each split. Defaults to square root of n of features for classification, and a third of n of features for regression.

grid.resample.params

List: Output of setup.resample defining grid search parameters.

ifw

Logical: If TRUE, apply inverse frequency weighting (for Classification only). Note: If weights are provided, ifw is not used.

upsample

Logical: If TRUE, upsample training set cases not belonging in majority outcome group

downsample

Logical: If TRUE, downsample majority class to match size of minority class

resample.seed

Integer: If provided, will be used to set the seed during upsampling. Default = NULL (random seed)

...

Additional arguments to be passed to ranger::ranger


egenn/rtemis documentation built on Dec. 17, 2024, 6:16 p.m.