wtd.rowSums: Weighted Sum of each Row

View source: R/wtd.rowSums.R

wtd.rowSumsR Documentation

Weighted Sum of each Row

Description

Returns weighted sum of each row of a data.frame or matrix, based on specified weights, one weight per column.

Usage

wtd.rowSums(x, wts = 1, na.rm = TRUE)

Arguments

x

Data.frame or matrix, required.

wts

Weights, optional, defaults to 1 which is unweighted, numeric vector of length equal to number of columns

na.rm

Logical value, optional, TRUE by default. Defines whether NA values should be removed before result is found. Otherwise result will be NA when any NA is in a vector.

Value

Returns a vector of numbers of length equal to number of rows in df.

See Also

wtd.colMeans() wtd.rowMeans() wtd.rowSums() rowMaxs() rowMins() colMins()

Examples

x=data.frame(a=c(NA, 2:10), b=rep(100,10), c=rep(3,10))
w=c(1.1, 2, NA)
cbind(x, wtd.rowMeans(x, w) )
cbind(x, wtd.rowSums(x, w) )
x=data.frame(a=c(NA, 2:4), b=rep(100,4), c=rep(3,4))
w=c(1.1, 2, NA, 0)
print(cbind(x,w, wtd=w*x))
print(wtd.colMeans(x, w, na.rm=TRUE))
#rbind(cbind(x,w,wtd=w*x), c(wtd.colMeans(x,w,na.rm=TRUE), 'wtd.colMeans', rep(NA,length(w))))

x=data.frame(a=c(NA, 2:10), b=rep(100,10), c=rep(3,10))
w=c(1.1, 2, NA, rep(1, 7))
print(cbind(x,w, wtd=w*x))
rbind(cbind(x, w), cbind(wtd.colMeans(x, w, na.rm=TRUE), w='wtd.colMeans') )
print(w*cbind(x,w))


ejanalysis/analyze.stuff documentation built on Dec. 11, 2024, 2:16 p.m.