calc_pvalues_percentile: Compute interaction p values for a single percentile value

View source: R/DEGGs_core_functions.R

calc_pvalues_percentileR Documentation

Compute interaction p values for a single percentile value

Description

Compute interaction p values for a single percentile value

Usage

calc_pvalues_percentile(
  normalised_counts,
  metadata,
  subgroup_variable,
  subgroups_length,
  subgroups_df_list,
  sig_var,
  percentile,
  combinations,
  regression_method = "rlm",
  edges,
  sig_edges_count
)

Arguments

normalised_counts

a data frame containing normalised counts from an high throughput sequencing experiment. Sample IDs must be in columns and gene/miRNA/TFs in rows. Objects of class matrix are not allowed.

metadata

a data frame of sample data with rownames matching the sample IDs in normalised_counts colnames

subgroup_variable

column name in metadata that contains the subgroup identifier for each sample in normalised_counts

subgroups_length

integer number indicating the number of subgroups

subgroups_df_list

list of subgroup data frames

sig_var

Inherited from generate_subnetworks. It can be q.value or p.value depending on how use_qvalues was set in the generate_subnetworks function (default FALSE).

percentile

a float number indicating the percentile to use.

combinations

data frame containing the subgroups combinations in rows

regression_method

whether to use robust linear modelling to obtain p value of the interactions. Options are 'rlm' (default) or 'lm'

edges

network of biological interactions in the form of a table of class data.frame with two columns: "from" and "to".

sig_edges_count

number of significant edges (p < 0.05)

Value

The list of float numbers of the significant pvalues for a specific percentile


elisabettasciacca/DEGGs documentation built on April 27, 2024, 12:51 a.m.