## Generate augmented data with leaves and SE by causal forest
AugDataCF <- function(df0, df_lst, cfit_lst, K, tau_fn) {
covars = grep("^X", names(df0), value=TRUE)
aug_df <- c()
for (k in 1:K) {
pred_cf <- predict(cfit_lst[[k]], as.matrix(df0[, ..covars]), estimate.variance=TRUE)
df0[, leaves := pred_cf$predictions]
df0[, leavesse := sqrt(pred_cf$variance.estimates)]
aug_df <- data.table(rbind(aug_df, cbind(df0, site=k, site_real=unique(df_lst[[k]]$U))))
}
aug_df$U <- aug_df$site_real
if (!is.null(tau_fn)) {
aug_df[, tau.aug := eval(tau_fn)] # tau_fn contains U
}
aug_df$site <- factor(aug_df$site)
aug_df$tau <- NULL # remove tau as for site 1 only
return(aug_df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.