ClusteringScatterPlot: Visualize the clustering over nonliner dimensionality...

ClusteringScatterPlotR Documentation

Visualize the clustering over nonliner dimensionality reduction

Description

ClusteringScatterPlot function enables visualizing the clustering over nonliner dimensionality reduction (t-SNE or UMAP).

Usage

ClusteringScatterPlot.SingleCellExperiment(
  object,
  clustering.type,
  return.plot,
  dim.reduction.type,
  point.size,
  title,
  show.legend
)

## S4 method for signature 'SingleCellExperiment'
ClusteringScatterPlot(
  object,
  clustering.type = "manual",
  return.plot = FALSE,
  dim.reduction.type = "",
  point.size = 0.7,
  title = "",
  show.legend = TRUE
)

Arguments

object

of SingleCellExperiment class

clustering.type

"manual" or "optimal". "manual" refers to the clustering formed using the "SelectKClusters" function and "optimal" to the clustering formed using the "CalcSilhInfo" function. Default is "manual".

return.plot

a logical denoting whether to return the ggplot2 object. Default is FALSE.

dim.reduction.type

"tsne" or "umap". Default is "tsne".

point.size

point size. Default is Default is 0.7.

title

text to write above the plot

show.legend

whether to show the legend on the right side of the plot. Default is TRUE.

Value

ggplot2 object if return.plot=TRUE

Examples

library(SingleCellExperiment)
sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
sce <- PrepareILoReg(sce)
## These settings are just to accelerate the example, use the defaults.
sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
sce <- RunPCA(sce,p=5)
sce <- HierarchicalClustering(sce)
sce <- SelectKClusters(sce,K=5)
sce <- RunTSNE(sce)
ClusteringScatterPlot(sce,"manual",dim.reduction.type="tsne")
sce <- RunUMAP(sce)
ClusteringScatterPlot(sce,"manual",dim.reduction.type="umap")


elolab/iloreg documentation built on March 27, 2022, 4:19 a.m.