Description Usage Arguments Details Author(s) Examples
This function run many models using the same data
| 1 2 3 4 5 6 | run_models(df, models = ifelse(is.factor(df[, 1]), c("qda", "rf", "gbm",
  "C5.0"), c("lm", "cubist", "gbm", "rf")), formula = NULL,
  preprocess = NULL, index = NULL, resample_ = "cv", nfolds = 10,
  repeats = NA, tune_length = 5, cpu_cores = 0,
  metric = ifelse(is.factor(df[, 1]), "Kappa", "Rsquared"), seeds = NULL,
  verbose = TRUE)
 | 
| df | Training dataframe | 
| models | chosen models to be used to train model. Uses algortims names from Caret package. | 
| formula | A formula of the form y ~ x1 + x2 + ... If users don't inform formula, the first column will be used as Y values and the others columns with x1,x2....xn | 
| preprocess | pre process | 
| index | Users cross validation folds. Default = NULL | 
| resample_ | resample method 'boot', 'boot632', 'optimism_boot', 'boot_all', 'cv', 'repeatedcv', 'LOOCV', 'LGOCV','none', 'oob', 'timeslice', 'adaptive_cv', 'adaptive_boot', 'adaptive_LGOCV' | 
| nfolds | Number of folds to be build in crossvalidation | 
| repeats | number of repeats to resample method repeatedcv | 
| tune_length | This argument is the number of levels for each tuning parameters that should be generated by train | 
| cpu_cores | Number of CPU cores to be used in parallel processing | 
| metric | metric used to evaluate model fit. For numeric outcome ("RMSE", "Rsquared) | 
| seeds | generate random seeds to allow reproductible results | 
| verbose | prints results during the execution of the function | 
details
Elpidio Filho, elpidio@ufv.br
| 1 2 3 4 5 | ## Not run: 
models = c("ridge", "rf", "cubist",'pls','pcr','foba','gbm','glmboost')
fit_models = run_models(df,models = models)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.