heat.default: heat

Description Usage Arguments Author(s) Source Examples

Description

Perform a monthly heat balance and annual energy demand of buildings

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
## Default S3 method:
heat(building = FALSE, climate = "Hamburg",
  general_name = "No Name", general_ploto = FALSE,
  general_plotn = "No Name", building_uwb = FALSE,
  building_windows = FALSE, building_uvalw = FALSE,
  building_uvalr = FALSE, building_uvalwindow = FALSE,
  building_dim = c(FALSE, FALSE), building_h = FALSE,
  user_aircrate = FALSE, user_ti = FALSE, user_qi = FALSE,
  building_orientation = FALSE, building_storagecapacity = FALSE,
  building_roofslope = FALSE, output_type = "Year")

Arguments

building

(optional, default = FALSE) use a user define building data file.

climate

(optional, default = Hamburg) use a specific climate file.

general_name

(optional, default = "No Name") if this value is not specifically define the function will load the values from the building data file.

general_ploto

(optional, default = FALSE)

general_plotn

(optional, default="No Name")

building_uwb

(optional, default = FALSE)

building_windows

(optional, default = FALSE)

building_uvalw

(optional, default = FALSE)

building_uvalr

(optional, default = FALSE)

building_uvalwindow

(optional, default = FALSE)

building_dim

(optional, default = c(FALSE,FALSE))

building_h

(optional, default = FALSE)

user_aircrate

(optional, default = FALSE)

user_ti

(optional, default = FALSE)

user_qi

(optional, default = FALSE)

building_orientation

(optional, default = FALSE)

building_storagecapacity

(optional, default = FALSE)

building_roofslope

(optional, default = FALSE)

output_type

(optional, default = "Year")

Author(s)

M. Esteban Munoz H.

Source

DIN V 18599

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
# Use the default values to compute the heat demand of a building
climate_month_names <- c("January","February","March","April",
                         "May","June","July","August",
                         "September","October","November","December")

model <- heat(building_orientation = 0,
              output_type = "Month")
Qhm <- model$Qhm
barplot(Qhm,
        names.arg=climate_month_names,
        main = "Monthly Heat Demand",
        ylab =  "head Demand [kWh]")

# This example show the heat demand variation for different
# U values combinations
Buildings.Number <- 9

U.Values <- matrix(c(
    1.3,    1.0,	3.0,    # 01
    1.2,	0.9,	2.7,    # 02
    1.1,	0.8,	2.7,    # 03
    1.0,	0.7,	2.7,    # 04
    0.9,	0.6,	2.4,    # 05
    0.8,	0.5,	2.1,    # 06
    0.6,	0.4,	1.9,    # 07
    0.5,	0.3,	1.6,    # 08
    0.4,	0.2,	1.6),   # 09
    3,Buildings.Number)

Heat.Demand <- rep(0,Buildings.Number)
for (i in 1:Buildings.Number){
    UvalW <- U.Values[1,i]
    UvalR <- U.Values[2,i]
    UvalWindow <- U.Values[3,i]
    temp.2 <- heat(building_uvalw = UvalW, 
                    building_uvalr = UvalR, 
                    building_uvalwindow = UvalWindow)
    Heat.Demand[i] <- temp.2$Qhs
}

# bar plot
barplot(Heat.Demand,
        names.arg = seq(1910,2010,12),
        main = "Heat demand for a set of buildings",
        ylab = "Heat demand [kWh/m²a]",
        xlab = "Building age")

# This example show the heat demand variation for different
# user influenced parameters
Buildings.Number <- 5

Param.Values <- matrix(c(
    7, 22, 0.7,   # 01
    6, 21, 0.6,   # 02
    5, 20, 0.5,   # 03
    4, 19, 0.4,   # 04
    3, 18, 0.3),  # 05
    3,Buildings.Number)

UvalW <- 0.4
UvalR <- 0.2
UvalWindow <- 1.6

Heat.Demand <- rep(0,Buildings.Number)
for (i in 1:Buildings.Number){
    AirCRate <- Param.Values[1,i]
    Ti <- Param.Values[2,i]
    qi <- Param.Values[3,i]
    temp.2 <- heat(user_aircrate = AirCRate, 
                   user_ti = Ti, 
                   user_qi = qi,
                   building_uvalw = UvalW, 
                   building_uvalr = UvalR, 
                   building_uvalwindow = UvalWindow)
    Heat.Demand[i] <- temp.2$Qhs
}

# bar plot
barplot(Heat.Demand,
        main = "Heat demand for a set of buildings",
        ylab = "Heat demand [kWh/m²a]",
        xlab = "Building age")

# This example show the heat demand variation for different
# Building orientations, it used the ggplot2 library
library(ggplot2)

iter <- seq(0,360,1)
Heat.Demand = rep(0,length(iter))
Heat.Gains.Solar = rep(0,length(iter))
Irradiation.Sum = rep(0,length(iter))

building_dim <- c(12,6) 
for (i in 1:length(iter)){
    BO <- iter[i]
    temp.2 <- heat(building_orientation = BO,
                   building_dim = building_dim)
    Heat.Demand[i] <- temp.2$Qhs
    Heat.Gains.Solar[i] <- temp.2$Ss
    Irradiation.Sum[i] <- temp.2$Ti
}

# Polar plot + line plot
result <- data.frame(heat.demand = Heat.Demand,
                     orientation = iter)
doh <- ggplot(result, aes(orientation, heat.demand))
# Line plot
doh + geom_line(colour = "red", size = 1)  + 
    coord_polar(direction = -1, start = -pi/2) +
    labs(title = "Heat demand for all possible building orientations") + 
    scale_x_continuous(breaks=seq(0, 360, 15))

emunozh/heat documentation built on May 16, 2019, 5:11 a.m.