Description Usage Arguments Author(s) Source Examples
Perform a monthly heat balance and annual energy demand of buildings
1 2 3 4 5 6 7 8 9 10 | ## Default S3 method:
heat(building = FALSE, climate = "Hamburg",
general_name = "No Name", general_ploto = FALSE,
general_plotn = "No Name", building_uwb = FALSE,
building_windows = FALSE, building_uvalw = FALSE,
building_uvalr = FALSE, building_uvalwindow = FALSE,
building_dim = c(FALSE, FALSE), building_h = FALSE,
user_aircrate = FALSE, user_ti = FALSE, user_qi = FALSE,
building_orientation = FALSE, building_storagecapacity = FALSE,
building_roofslope = FALSE, output_type = "Year")
|
building |
(optional, default = FALSE) use a user define building data file. |
climate |
(optional, default = Hamburg) use a specific climate file. |
general_name |
(optional, default = "No Name") if this value is not specifically define the function will load the values from the building data file. |
general_ploto |
(optional, default = FALSE) |
general_plotn |
(optional, default="No Name") |
building_uwb |
(optional, default = FALSE) |
building_windows |
(optional, default = FALSE) |
building_uvalw |
(optional, default = FALSE) |
building_uvalr |
(optional, default = FALSE) |
building_uvalwindow |
(optional, default = FALSE) |
building_dim |
(optional, default = c(FALSE,FALSE)) |
building_h |
(optional, default = FALSE) |
user_aircrate |
(optional, default = FALSE) |
user_ti |
(optional, default = FALSE) |
user_qi |
(optional, default = FALSE) |
building_orientation |
(optional, default = FALSE) |
building_storagecapacity |
(optional, default = FALSE) |
building_roofslope |
(optional, default = FALSE) |
output_type |
(optional, default = "Year") |
M. Esteban Munoz H.
DIN V 18599
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | # Use the default values to compute the heat demand of a building
climate_month_names <- c("January","February","March","April",
"May","June","July","August",
"September","October","November","December")
model <- heat(building_orientation = 0,
output_type = "Month")
Qhm <- model$Qhm
barplot(Qhm,
names.arg=climate_month_names,
main = "Monthly Heat Demand",
ylab = "head Demand [kWh]")
# This example show the heat demand variation for different
# U values combinations
Buildings.Number <- 9
U.Values <- matrix(c(
1.3, 1.0, 3.0, # 01
1.2, 0.9, 2.7, # 02
1.1, 0.8, 2.7, # 03
1.0, 0.7, 2.7, # 04
0.9, 0.6, 2.4, # 05
0.8, 0.5, 2.1, # 06
0.6, 0.4, 1.9, # 07
0.5, 0.3, 1.6, # 08
0.4, 0.2, 1.6), # 09
3,Buildings.Number)
Heat.Demand <- rep(0,Buildings.Number)
for (i in 1:Buildings.Number){
UvalW <- U.Values[1,i]
UvalR <- U.Values[2,i]
UvalWindow <- U.Values[3,i]
temp.2 <- heat(building_uvalw = UvalW,
building_uvalr = UvalR,
building_uvalwindow = UvalWindow)
Heat.Demand[i] <- temp.2$Qhs
}
# bar plot
barplot(Heat.Demand,
names.arg = seq(1910,2010,12),
main = "Heat demand for a set of buildings",
ylab = "Heat demand [kWh/m²a]",
xlab = "Building age")
# This example show the heat demand variation for different
# user influenced parameters
Buildings.Number <- 5
Param.Values <- matrix(c(
7, 22, 0.7, # 01
6, 21, 0.6, # 02
5, 20, 0.5, # 03
4, 19, 0.4, # 04
3, 18, 0.3), # 05
3,Buildings.Number)
UvalW <- 0.4
UvalR <- 0.2
UvalWindow <- 1.6
Heat.Demand <- rep(0,Buildings.Number)
for (i in 1:Buildings.Number){
AirCRate <- Param.Values[1,i]
Ti <- Param.Values[2,i]
qi <- Param.Values[3,i]
temp.2 <- heat(user_aircrate = AirCRate,
user_ti = Ti,
user_qi = qi,
building_uvalw = UvalW,
building_uvalr = UvalR,
building_uvalwindow = UvalWindow)
Heat.Demand[i] <- temp.2$Qhs
}
# bar plot
barplot(Heat.Demand,
main = "Heat demand for a set of buildings",
ylab = "Heat demand [kWh/m²a]",
xlab = "Building age")
# This example show the heat demand variation for different
# Building orientations, it used the ggplot2 library
library(ggplot2)
iter <- seq(0,360,1)
Heat.Demand = rep(0,length(iter))
Heat.Gains.Solar = rep(0,length(iter))
Irradiation.Sum = rep(0,length(iter))
building_dim <- c(12,6)
for (i in 1:length(iter)){
BO <- iter[i]
temp.2 <- heat(building_orientation = BO,
building_dim = building_dim)
Heat.Demand[i] <- temp.2$Qhs
Heat.Gains.Solar[i] <- temp.2$Ss
Irradiation.Sum[i] <- temp.2$Ti
}
# Polar plot + line plot
result <- data.frame(heat.demand = Heat.Demand,
orientation = iter)
doh <- ggplot(result, aes(orientation, heat.demand))
# Line plot
doh + geom_line(colour = "red", size = 1) +
coord_polar(direction = -1, start = -pi/2) +
labs(title = "Heat demand for all possible building orientations") +
scale_x_continuous(breaks=seq(0, 360, 15))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.