Man pages for epiforecasts/scoringutils
Utilities for Scoring and Assessing Predictions

add_relative_skillAdd relative skill scores based on pairwise comparisons
ae_median_quantileAbsolute error of the median (quantile-based version)
ae_median_sampleAbsolute error of the median (sample-based version)
apply_metricsApply a list of functions to a data table of forecasts
as_forecast_binaryCreate a 'forecast' object for binary forecasts
as_forecast_doc_templateGeneral information on creating a 'forecast' object
as_forecast_genericCommon functionality for as_forecast_<type> functions
as_forecast_nominalCreate a 'forecast' object for nominal forecasts
as_forecast_ordinalCreate a 'forecast' object for ordinal forecasts
as_forecast_pointCreate a 'forecast' object for point forecasts
as_forecast_quantileCreate a 'forecast' object for quantile-based forecasts
as_forecast_sampleCreate a 'forecast' object for sample-based forecasts
as_scoresCreate an object of class 'scores' from data
assert_dims_ok_pointAssert Inputs Have Matching Dimensions
assert_forecastAssert that input is a forecast object and passes validations
assert_forecast_genericValidation common to all forecast types
assert_forecast_typeAssert that forecast type is as expected
assert_input_binaryAssert that inputs are correct for binary forecast
assert_input_intervalAssert that inputs are correct for interval-based forecast
assert_input_nominalAssert that inputs are correct for nominal forecasts
assert_input_ordinalAssert that inputs are correct for ordinal forecasts
assert_input_pointAssert that inputs are correct for point forecast
assert_input_quantileAssert that inputs are correct for quantile-based forecast
assert_input_sampleAssert that inputs are correct for sample-based forecast
assert_scoresValidate an object of class 'scores'
bias_quantileDetermines bias of quantile forecasts
bias_quantile_single_vectorCompute bias for a single vector of quantile predictions
bias_sampleDetermine bias of forecasts
check_columns_presentCheck column names are present in a data.frame
check_dims_ok_pointCheck Inputs Have Matching Dimensions
check_duplicatesCheck that there are no duplicate forecasts
check_input_binaryCheck that inputs are correct for binary forecast
check_input_intervalCheck that inputs are correct for interval-based forecast
check_input_pointCheck that inputs are correct for point forecast
check_input_quantileCheck that inputs are correct for quantile-based forecast
check_input_sampleCheck that inputs are correct for sample-based forecast
check_number_per_forecastCheck that all forecasts have the same number of rows
check_numeric_vectorCheck whether an input is an atomic vector of mode 'numeric'
check_tryHelper function to convert assert statements into checks
clean_forecastClean forecast object
compare_forecastsCompare a subset of common forecasts
crps_sample(Continuous) ranked probability score
document_assert_functionsDocumentation template for assert functions
document_check_functionsDocumentation template for check functions
document_test_functionsDocumentation template for test functions
dss_sampleDawid-Sebastiani score
ensure_data.tableEnsure that an object is a 'data.table'
example_binaryBinary forecast example data
example_nominalNominal example data
example_ordinalOrdinal example data
example_pointPoint forecast example data
example_quantileQuantile example data
example_sample_continuousContinuous forecast example data
example_sample_discreteDiscrete forecast example data
forecast_typesDocumentation template for forecast types
geometric_meanCalculate geometric mean
get_correlationsCalculate correlation between metrics
get_coverageGet quantile and interval coverage values for quantile-based...
get_duplicate_forecastsFind duplicate forecasts
get_forecast_countsCount number of available forecasts
get_forecast_typeGet forecast type from forecast object
get_forecast_unitGet unit of a single forecast
get_metricsGet metrics
get_metrics.forecast_binaryGet default metrics for binary forecasts
get_metrics.forecast_nominalGet default metrics for nominal forecasts
get_metrics.forecast_ordinalGet default metrics for nominal forecasts
get_metrics.forecast_pointGet default metrics for point forecasts
get_metrics.forecast_quantileGet default metrics for quantile-based forecasts
get_metrics.forecast_sampleGet default metrics for sample-based forecasts
get_metrics.scoresGet names of the metrics that were used for scoring
get_pairwise_comparisonsObtain pairwise comparisons between models
get_pit_histogramProbability integral transformation histogram
get_protected_columnsGet protected columns from data
get_range_from_quantileGet interval range belonging to a quantile
get_typeGet type of a vector or matrix of observed values or...
illustration-input-metric-binary-pointIllustration of required inputs for binary and point...
illustration-input-metric-nominalIllustration of required inputs for nominal forecasts
illustration-input-metric-ordinalIllustration of required inputs for ordinal forecasts
illustration-input-metric-quantileIllustration of required inputs for quantile-based forecasts
illustration-input-metric-sampleIllustration of required inputs for sample-based forecasts
interpolate_medianHelper function to interpolate the median prediction if it is...
interval_coverageInterval coverage (for quantile-based forecasts)
interval_scoreInterval score
is_forecastTest whether an object is a forecast object
log_shiftLog transformation with an additive shift
logs_sampleLogarithmic score (sample-based version)
mad_sampleDetermine dispersion of a probabilistic forecast
new_forecastClass constructor for 'forecast' objects
new_scoresConstruct an object of class 'scores'
pairwise_comparison_one_groupDo pairwise comparison for one set of forecasts
permutation_testSimple permutation test
pit_histogram_sampleProbability integral transformation for counts
plot_correlationsPlot correlation between metrics
plot_forecast_countsVisualise the number of available forecasts
plot_heatmapCreate a heatmap of a scoring metric
plot_interval_coveragePlot interval coverage
plot_pairwise_comparisonsPlot heatmap of pairwise comparisons
plot_quantile_coveragePlot quantile coverage
plot_wisPlot contributions to the weighted interval score
print.forecastPrint information about a forecast object
quantile_scoreQuantile score
quantile_to_intervalTransform from a quantile format to an interval format
rps_ordinalRanked Probability Score for ordinal outcomes
run_safelyRun a function safely
sample_to_interval_longChange data from a sample-based format to a long interval...
scoreEvaluate forecasts
scoring-functions-binaryMetrics for binary outcomes
scoring-functions-nominalLog score for categorical outcomes
scoringutils-packagescoringutils: Utilities for Scoring and Assessing Predictions
select_metricsSelect metrics from a list of functions
se_mean_sampleSquared error of the mean (sample-based version)
set_forecast_unitSet unit of a single forecast manually
summarise_scoresSummarise scores as produced by 'score()'
test_columns_not_presentTest whether column names are NOT present in a data.frame
test_columns_presentTest whether all column names are present in a data.frame
theme_scoringutilsScoringutils ggplot2 theme
transform_forecastsTransform forecasts and observed values
validate_metricsValidate metrics
wisWeighted interval score (WIS)
epiforecasts/scoringutils documentation built on Dec. 11, 2024, 11:12 a.m.