#### Simulation array look-up ####
library(dplyr)
data <- c("KangSchafer",
"Sonabend",
"Hainmueller")
n <- 2^(9:13)
n <- 2^(9)
p <- c(6, 4, 2)
overlap <- c("high", "medium","low")
design <- c("A", "B", "C")
metric <- c("sdLp")
penalty <- list(c("L2","entropy"))
formula <- list(c(NA_character_, "~ . + 0"))
nexperiments <- 1000
expernum <- 1:nexperiments
arrayset <- 1:4
arrayset.idx <- rep(arrayset,each = nexperiments/max(arrayset))
maxarray <- 1e4
df <- expand.grid(experiment.number = expernum,
data = data, n = n, p = p, overlap = overlap,
design = design,
penalty = penalty,
metric = metric,
formula = formula
)
df$arrayset <- rep(1:max(arrayset), length.out = nexperiments)
df.out <- df %>% filter((data != "Sonabend" & df$p != 2) |
data == "Sonabend") %>%
filter(data != "Hainmueller" | (data == "Hainmueller" & p == 6)) %>%
filter((data != "FanEtAl" & design != "C") | (data == "FanEtAl")) %>%
filter(data != "FanEtAl" | (data == "FanEtAl" & overlap == "high")) %>%
mutate(method = list(c("Logistic",
"SBW",
"NNM",
"Wasserstein",
"SCM")))
df.out <- df.out %>% filter(data != "FanEtAl") %>% filter(
(data == "KangSchafer" & p != 6) |
(data == "Sonabend" & !(p %in% c(4,6))) |
data == "Hainmueller") %>%
# filter(design == "B") %>%
filter(arrayset == 1) %>% filter("Hainmueller" == data)
saveRDS(df.out, file = "code/original_sim/Hainmueller/sim_arraylookup.rds")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.