data = read.csv('FHS.csv') #requires prior authorization from https://biolincc.nhlbi.nih.gov/studies/framcohort/
data = data[,-c(5,13,21)]
data = as.matrix(data[complete.cases(data),])
BMI = 25
Y = 0+(data[,5]>=BMI)
X = data[,-c(5,12,19,9,16)]
Xo = X
X = normalizeData(X)
reps = 1000
RCI_res = vector("list",reps)
RCI_noY_res = RCI_res
ICA_res = RCI_res
CO_res = RCI_res
MS_res = RCI_res
HPC_res = RCI_res
TT_res = RCI_res
LR_res = RCI_res
r= length(Y)
c = ncol(X)
for (i in 1:reps){
print(i)
is = sample(r,r,replace=TRUE)
Xt = X[is,]
Yt = Y[is]
id = sample(1:c,c,replace=FALSE)
Xt = Xt[,id]
### RUN ALGORITHMS
ptm <- proc.time()
out = RCI(Xt,Yt)
RCI_res[[i]]$time = (proc.time() - ptm)[3]
RCI_res[[i]]$rank_overlap = eval_scores_fhs(out,X[is,],id)
RCI_res[[i]]$time_LiNGAM = out$time
ptm <- proc.time()
out = RCI_noY(Xt,Yt)
RCI_noY_res[[i]]$time = (proc.time() - ptm)[3]
RCI_noY_res[[i]]$rank_overlap = eval_scores_fhs(out,X[is,],id)
RCI_noY_res[[i]]$time_LiNGAM_fast = out$time
out = LiNGAM_times(Xt,Yt)
RCI_res[[i]]$time_LiNGAM_slow_Y = out$time1
# RCI_res[[i]]$time_LiNGAM_fast = out$time2
ptm <- proc.time()
out = ICA_predict(Xt,Yt)
ICA_res[[i]]$time = (proc.time() - ptm)[3]
ICA_res[[i]]$rank_overlap = eval_scores_fhs(out,X[is,],id)
beta = glm.fit(cbind(out$E,1),Yt,family=binomial())$coefficients[1:ncol(out$E)] # compute scores using LR
if (length(beta)==1){
out$scores = out$E * beta
} else{
out$scores = out$E %*% diag(beta)
}
ICA_res[[i]]$rank_overlap_LR = eval_scores_fhs(out,X[is,],id)
ICA_res[[i]]$time_ICA = out$time
ptm <- proc.time()
out = cond_outl(Xt,Yt)
CO_res[[i]]$time = (proc.time() - ptm)[3]
CO_res[[i]]$rank_overlap = eval_scores_fhs(out,X[is,],id)
CO_res[[i]]$time_ICA = out$listL$time
MS_res[[i]]$time = out$listL$time
ptm <- proc.time()
out = model_subst(Xt,Yt,out$listL)
MS_res[[i]]$time = (proc.time() - ptm)[3] + MS_res[[i]]$time
MS_res[[i]]$rank_overlap = eval_scores_fhs(out,X[is,],id)
ptm <- proc.time()
Xm = as.matrix(Xt); colnames(Xm) = NULL;
out = HITON_PC(Xm,Yt)
HPC_res[[i]]$time = (proc.time() - ptm)[3]
HPC_res[[i]]$rank_overlap = eval_scores_fhs(out,X[is,],id)
ptm <- proc.time()
out = ttest_scores(Xt,Yt)
TT_res[[i]]$time = (proc.time() - ptm)[3]
TT_res[[i]]$rank_overlap = eval_scores_fhs(out,X[is,],id)
ptm <- proc.time()
out = Adaptive_LR(Xt,Yt)
LR_res[[i]]$time = (proc.time() - ptm)[3]
LR_res[[i]]$rank_overlap = eval_scores_fhs(out,X[is,],id)
### SAVE RESULTS
save(file="Res_FHS.RData",Gs,RCI_res,RCI_noY_res,ICA_res,
CO_res,MS_res,HPC_res,TT_res,LR_res)
}
### RBO
RBO = matrix(0,reps,8)
for (i in 1:reps){
RBO[i,1] = RCI_res[[i]]$rank_overlap
RBO[i,2] = RCI_noY_res[[i]]$rank_overlap
RBO[i,3] = ICA_res[[i]]$rank_overlap
RBO[i,4] = CO_res[[i]]$rank_overlap
RBO[i,5] = MS_res[[i]]$rank_overlap
RBO[i,6] = HPC_res[[i]]$rank_overlap
RBO[i,7] = TT_res[[i]]$rank_overlap
RBO[i,8] = LR_res[[i]]$rank_overlap
}
print(colMeans(RBO))
### TIMING
Time = matrix(0,reps,4)
for (i in 1:reps){
Time[i,1] = RCI_res[[i]]$time_LiNGAM
Time[i,2] = RCI_noY_res[[i]]$time_LiNGAM_fast
Time[i,3] = RCI_res[[i]]$time_LiNGAM_slow_Y
Time[i,4] = CO_res[[i]]$time_ICA
}
print(colMeans(Time[,4]/Time))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.