# low-high-high ####
fish_boot_mt_input <- list(n_sp = 50, # number of species
n_year = seq(0, 10, by = 1), # number of time points
n_loc = 3, # number of locations
n_obs = 1, # number of locations
mu = -0.5, # mean log abundance
# mu_sigma = fish_point_est_wide$sigma_mu_sq_p[2], # mean log abundance
mu_sigma = 0, # mean log abundance
# mu_sigma = 2, # mean log abundance
sigma_r_sq = 6, # species heterogeneity
sigma_s_sq = 3, # environmental variance
# sigma_s_sq = 0, # environmental variance
sigma_d_sq = 0, # sampling variance
delta = 0.2, # "strength of density regulation"
eta = 0,
pos_x = NULL,
pos_y = NULL) # 1 / "spatial scaling of noise"
fish_data_mt_boot <- f_sim_sad_fast(input = fish_boot_mt_input, time = "fixed", dependency = "time", var_mu = TRUE)
inter_fish_boot <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
dplyr::select(year_m, pos_m) %>%
arrange(pos_m, year_m) %>%
distinct() %>%
mutate(inter = interaction(year_m, pos_m)) %>%
group_by(pos_m) %>%
mutate(min_int = inter[1],
max_int = inter[length(inter)]) %>%
ungroup() %>%
dplyr::select(min_int, max_int) %>%
distinct()
plot_lhh <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
ggplot(aes(x = interaction(year_m, pos_m), y = species)) +
geom_raster(aes(fill = log(abundance)), hjust = 1) +
geom_vline(data = inter_fish_boot, aes(xintercept = min_int), colour = "red") +
scale_fill_viridis_c("log ab.") +
theme(axis.text.x = element_text(hjust = 1, angle = 45))
# high-high-high ####
fish_boot_mt_input <- list(n_sp = 50, # number of species
n_year = seq(0, 10, by = 1), # number of time points
n_loc = 3, # number of locations
n_obs = 1, # number of locations
mu = -0.5, # mean log abundance
# mu_sigma = fish_point_est_wide$sigma_mu_sq_p[2], # mean log abundance
mu_sigma = 2, # mean log abundance
# mu_sigma = 2, # mean log abundance
sigma_r_sq = 6, # species heterogeneity
sigma_s_sq = 3, # environmental variance
# sigma_s_sq = 0, # environmental variance
sigma_d_sq = 0, # sampling variance
delta = 0.2, # "strength of density regulation"
eta = 0,
pos_x = NULL,
pos_y = NULL) # 1 / "spatial scaling of noise"
fish_data_mt_boot <- f_sim_sad_fast(input = fish_boot_mt_input, time = "fixed", dependency = "time", var_mu = TRUE)
inter_fish_boot <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
dplyr::select(year_m, pos_m) %>%
arrange(pos_m, year_m) %>%
distinct() %>%
mutate(inter = interaction(year_m, pos_m)) %>%
group_by(pos_m) %>%
mutate(min_int = inter[1],
max_int = inter[length(inter)]) %>%
ungroup() %>%
dplyr::select(min_int, max_int) %>%
distinct()
plot_hhh <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
ggplot(aes(x = interaction(year_m, pos_m), y = species)) +
geom_raster(aes(fill = log(abundance)), hjust = 1) +
geom_vline(data = inter_fish_boot, aes(xintercept = min_int), colour = "red") +
scale_fill_viridis_c("log ab.") +
theme(axis.text.x = element_text(hjust = 1, angle = 45))
# low-high-low ####
fish_boot_mt_input <- list(n_sp = 50, # number of species
n_year = seq(0, 10, by = 1), # number of time points
n_loc = 3, # number of locations
n_obs = 1, # number of locations
mu = -0.5, # mean log abundance
# mu_sigma = fish_point_est_wide$sigma_mu_sq_p[2], # mean log abundance
mu_sigma = 0, # mean log abundance
# mu_sigma = 2, # mean log abundance
sigma_r_sq = 6, # species heterogeneity
sigma_s_sq = 0, # environmental variance
# sigma_s_sq = 0, # environmental variance
sigma_d_sq = 0, # sampling variance
delta = 0.2, # "strength of density regulation"
eta = 0,
pos_x = NULL,
pos_y = NULL) # 1 / "spatial scaling of noise"
fish_data_mt_boot <- f_sim_sad_fast(input = fish_boot_mt_input, time = "fixed", dependency = "time", var_mu = TRUE)
inter_fish_boot <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
dplyr::select(year_m, pos_m) %>%
arrange(pos_m, year_m) %>%
distinct() %>%
mutate(inter = interaction(year_m, pos_m)) %>%
group_by(pos_m) %>%
mutate(min_int = inter[1],
max_int = inter[length(inter)]) %>%
ungroup() %>%
dplyr::select(min_int, max_int) %>%
distinct()
plot_lhl <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
ggplot(aes(x = interaction(year_m, pos_m), y = species)) +
geom_raster(aes(fill = log(abundance)), hjust = 1) +
geom_vline(data = inter_fish_boot, aes(xintercept = min_int), colour = "red") +
scale_fill_viridis_c("log ab.") +
theme(axis.text.x = element_text(hjust = 1, angle = 45))
# low-low-high ####
fish_boot_mt_input <- list(n_sp = 50, # number of species
n_year = seq(0, 10, by = 1), # number of time points
n_loc = 3, # number of locations
n_obs = 1, # number of locations
mu = -0.5, # mean log abundance
# mu_sigma = fish_point_est_wide$sigma_mu_sq_p[2], # mean log abundance
mu_sigma = 0, # mean log abundance
# mu_sigma = 2, # mean log abundance
sigma_r_sq = 0, # species heterogeneity
sigma_s_sq = 3, # environmental variance
# sigma_s_sq = 0, # environmental variance
sigma_d_sq = 0, # sampling variance
delta = 0.2, # "strength of density regulation"
eta = 0,
pos_x = NULL,
pos_y = NULL) # 1 / "spatial scaling of noise"
fish_data_mt_boot <- f_sim_sad_fast(input = fish_boot_mt_input, time = "fixed", dependency = "time", var_mu = TRUE)
inter_fish_boot <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
dplyr::select(year_m, pos_m) %>%
arrange(pos_m, year_m) %>%
distinct() %>%
mutate(inter = interaction(year_m, pos_m)) %>%
group_by(pos_m) %>%
mutate(min_int = inter[1],
max_int = inter[length(inter)]) %>%
ungroup() %>%
dplyr::select(min_int, max_int) %>%
distinct()
plot_llh <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
ggplot(aes(x = interaction(year_m, pos_m), y = species)) +
geom_raster(aes(fill = log(abundance)), hjust = 1) +
geom_vline(data = inter_fish_boot, aes(xintercept = min_int), colour = "red") +
scale_fill_viridis_c("log ab.") +
theme(axis.text.x = element_text(hjust = 1, angle = 45))
# low-low-low ####
fish_boot_mt_input <- list(n_sp = 50, # number of species
n_year = seq(0, 10, by = 1), # number of time points
n_loc = 3, # number of locations
n_obs = 1, # number of locations
mu = -0.5, # mean log abundance
# mu_sigma = fish_point_est_wide$sigma_mu_sq_p[2], # mean log abundance
mu_sigma = 0, # mean log abundance
# mu_sigma = 2, # mean log abundance
sigma_r_sq = 0, # species heterogeneity
sigma_s_sq = 0, # environmental variance
# sigma_s_sq = 0, # environmental variance
sigma_d_sq = 0, # sampling variance
delta = 0.2, # "strength of density regulation"
eta = 0,
pos_x = NULL,
pos_y = NULL) # 1 / "spatial scaling of noise"
fish_data_mt_boot <- f_sim_sad_fast(input = fish_boot_mt_input, time = "fixed", dependency = "time", var_mu = TRUE)
inter_fish_boot <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
dplyr::select(year_m, pos_m) %>%
arrange(pos_m, year_m) %>%
distinct() %>%
mutate(inter = interaction(year_m, pos_m)) %>%
group_by(pos_m) %>%
mutate(min_int = inter[1],
max_int = inter[length(inter)]) %>%
ungroup() %>%
dplyr::select(min_int, max_int) %>%
distinct()
plot_lll <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
ggplot(aes(x = interaction(year_m, pos_m), y = species)) +
geom_raster(aes(fill = log(abundance)), hjust = 1) +
geom_vline(data = inter_fish_boot, aes(xintercept = min_int), colour = "red") +
scale_fill_viridis_c("log ab.") +
theme(axis.text.x = element_text(hjust = 1, angle = 45))
# high-low-low ####
fish_boot_mt_input <- list(n_sp = 50, # number of species
n_year = seq(0, 10, by = 1), # number of time points
n_loc = 3, # number of locations
n_obs = 1, # number of locations
mu = -0.5, # mean log abundance
# mu_sigma = fish_point_est_wide$sigma_mu_sq_p[2], # mean log abundance
mu_sigma = 2, # mean log abundance
# mu_sigma = 2, # mean log abundance
sigma_r_sq = 0, # species heterogeneity
sigma_s_sq = 0, # environmental variance
# sigma_s_sq = 0, # environmental variance
sigma_d_sq = 0, # sampling variance
delta = 0.2, # "strength of density regulation"
eta = 0,
pos_x = NULL,
pos_y = NULL) # 1 / "spatial scaling of noise"
fish_data_mt_boot <- f_sim_sad_fast(input = fish_boot_mt_input, time = "fixed", dependency = "time", var_mu = TRUE)
inter_fish_boot <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
dplyr::select(year_m, pos_m) %>%
arrange(pos_m, year_m) %>%
distinct() %>%
mutate(inter = interaction(year_m, pos_m)) %>%
group_by(pos_m) %>%
mutate(min_int = inter[1],
max_int = inter[length(inter)]) %>%
ungroup() %>%
dplyr::select(min_int, max_int) %>%
distinct()
plot_hll <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
ggplot(aes(x = interaction(year_m, pos_m), y = species)) +
geom_raster(aes(fill = log(abundance)), hjust = 1) +
geom_vline(data = inter_fish_boot, aes(xintercept = min_int), colour = "red") +
scale_fill_viridis_c("log ab.") +
theme(axis.text.x = element_text(hjust = 1, angle = 45))
# high-high-low ####
fish_boot_mt_input <- list(n_sp = 50, # number of species
n_year = seq(0, 10, by = 1), # number of time points
n_loc = 3, # number of locations
n_obs = 1, # number of locations
mu = -0.5, # mean log abundance
# mu_sigma = fish_point_est_wide$sigma_mu_sq_p[2], # mean log abundance
mu_sigma = 2, # mean log abundance
# mu_sigma = 2, # mean log abundance
sigma_r_sq = 6, # species heterogeneity
sigma_s_sq = 0, # environmental variance
# sigma_s_sq = 0, # environmental variance
sigma_d_sq = 0, # sampling variance
delta = 0.2, # "strength of density regulation"
eta = 0,
pos_x = NULL,
pos_y = NULL) # 1 / "spatial scaling of noise"
fish_data_mt_boot <- f_sim_sad_fast(input = fish_boot_mt_input, time = "fixed", dependency = "time", var_mu = TRUE)
inter_fish_boot <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
dplyr::select(year_m, pos_m) %>%
arrange(pos_m, year_m) %>%
distinct() %>%
mutate(inter = interaction(year_m, pos_m)) %>%
group_by(pos_m) %>%
mutate(min_int = inter[1],
max_int = inter[length(inter)]) %>%
ungroup() %>%
dplyr::select(min_int, max_int) %>%
distinct()
plot_hhl <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
ggplot(aes(x = interaction(year_m, pos_m), y = species)) +
geom_raster(aes(fill = log(abundance)), hjust = 1) +
geom_vline(data = inter_fish_boot, aes(xintercept = min_int), colour = "red") +
scale_fill_viridis_c("log ab.") +
theme(axis.text.x = element_text(hjust = 1, angle = 45))
# high-low-high ####
fish_boot_mt_input <- list(n_sp = 50, # number of species
n_year = seq(0, 10, by = 1), # number of time points
n_loc = 3, # number of locations
n_obs = 1, # number of locations
mu = -0.5, # mean log abundance
# mu_sigma = fish_point_est_wide$sigma_mu_sq_p[2], # mean log abundance
mu_sigma = 2, # mean log abundance
# mu_sigma = 2, # mean log abundance
sigma_r_sq = 0, # species heterogeneity
sigma_s_sq = 3, # environmental variance
# sigma_s_sq = 0, # environmental variance
sigma_d_sq = 0, # sampling variance
delta = 0.2, # "strength of density regulation"
eta = 0,
pos_x = NULL,
pos_y = NULL) # 1 / "spatial scaling of noise"
fish_data_mt_boot <- f_sim_sad_fast(input = fish_boot_mt_input, time = "fixed", dependency = "time", var_mu = TRUE)
inter_fish_boot <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
dplyr::select(year_m, pos_m) %>%
arrange(pos_m, year_m) %>%
distinct() %>%
mutate(inter = interaction(year_m, pos_m)) %>%
group_by(pos_m) %>%
mutate(min_int = inter[1],
max_int = inter[length(inter)]) %>%
ungroup() %>%
dplyr::select(min_int, max_int) %>%
distinct()
plot_hlh <- fish_data_mt_boot %>%
filter(abundance > 0) %>%
mutate(pos_m = rank(pos_m)) %>%
ggplot(aes(x = interaction(year_m, pos_m), y = species)) +
geom_raster(aes(fill = log(abundance)), hjust = 1) +
geom_vline(data = inter_fish_boot, aes(xintercept = min_int), colour = "red") +
scale_fill_viridis_c("log ab.") +
theme(axis.text.x = element_text(hjust = 1, angle = 45))
library(cowplot)
plot_grid(plot_hhh, plot_hlh, plot_hhl, plot_hll,
# labels = c("hhh", "hlh",
# "hhl", "hll"),
labels = c("A", "B",
"C", "D"))
ggsave("logab_high_common_noise.pdf", width = 6, height = 9)
plot_grid(plot_hhh, plot_hlh,
plot_lhh, plot_llh,
# labels = c("hhh", "hlh",
# "lhh", "llh")
labels = c("A", "B",
"C", "D"))
ggsave("logab_high_environmental_noise.pdf", width = 6, height = 9)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.