#' Fit signal distributions for signal principal components - assumes skew student t distributions
#'
#' @param timeSeriesMatrix xts time series matrix
#' @param signalEigenValues signal eigenvalues determined by dominantEigenvectors
#' @param signalEigenVectors signal eigenvectors determined by dominantEigenvectors
#'
#' @return a list with skew student t distribution fits for each component
#'
#' @examples
#' none
#'
#' @export
fitMarginalSignal <- function(timeSeriesMatrix, signalEigenValues, signalEigenVectors){
#Extract signal vectors
signalFactors <- tsEigenProduct(timeSeriesMatrix, signalEigenVectors)
skewStudentTFits <- fitSkewStudentTDistributions(timeSeriesMatrix = signalFactors
)
skewStudentTFitEvaluation <- evaluateSkewStudentTDistributions(timeSeriesMatrix = signalFactors
,listOfParameters = skewStudentTFits)
print(lapply(skewStudentTFitEvaluation,function(x){return(as.vector(x$p.value))}))
return(list(fits = skewStudentTFits, evaluation = skewStudentTFitEvaluation))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.