Description Usage Arguments Value Author(s) See Also Examples
Estimate differential expression at gene level and differential usage at bin and junction level.
1  | DUreport_DEXSeq(counts, targets, pair, group, minGenReads, minBinReads, minRds,threshold)
 | 
counts | 
 An object of class ASpliCounts  | 
targets | 
 A dataframe containing sample, bam and condition columns  | 
pair | 
 vector of length two, either numeric or character, providing the pair of groups to be compared  | 
group | 
 Factorial vector with tags for each sample  | 
minGenReads | 
 Default 10 reads  | 
minBinReads | 
 Default 5 reads  | 
minRds | 
 Default 0.05  | 
threshold | 
 Minimun number of junction. Default 5  | 
 An ASpliDU object with results at genes, bins and junctions level 
Estefania Mancini, Marcelo Yanovsky, Ariel Chernomoretz
DEXSeq, edgeR
Accesors: genesDE, binsDU,junctionsDU
Export: writeDU
1 2 3 4 5 6 7 8 9 10 11 12 13  | library(RNAseqData.HNRNPC.bam.chr14)
chr14 <- system.file("extdata","chr14.sqlite", package="ASpli")
genome <- loadDb(chr14)
features <- binGenome(genome)
targets <- data.frame(bam=RNAseqData.HNRNPC.bam.chr14_BAMFILES,
                       condition=c(rep("CT",4),rep("KD",4)))
bam <- loadBAM(targets)
counts <- readCounts(features, bam, l=100L, maxISize=50000)
group <- factor(c(rep("CT",4), 
                rep("KD",4)))
pair <- c("CT","KD")  
du <- DUreport_DEXSeq(counts, targets, pair, group)
writeDU(du, output.dir="only_du")
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.