#' @importFrom precrec
context("PL 4: Calculate evaluation measures")
# Test calc_measures(cmats, scores, labels)
test_that("calc_measures() reterns an 'pevals' object", {
pevals1 <- calc_measures(scores = c(0.1, 0.2, 0), labels = c(1, 0, 1))
data(P10N10)
fmdat <- reformat_data(P10N10$scores, P10N10$labels)
cmats <- create_confmats(fmdat)
pevals2 <- calc_measures(cmats)
pevals3 <- calc_measures(scores = P10N10$scores, labels = P10N10$labels)
expect_true(is(pevals1, "pevals"))
expect_true(is(pevals2, "pevals"))
expect_true(is(pevals3, "pevals"))
})
test_that("'cmats' must be a 'cmats' object", {
expect_err_msg <- function(cmats) {
err_msg <- "Unrecognized class for .validate()"
expect_error(calc_measures(cmats), err_msg)
}
expect_err_msg(list())
expect_err_msg(data.frame())
})
test_that("calc_measures() can directly take scores and labels", {
cmats <- create_confmats(
scores = c(0.1, 0.2, 0.2, 0),
labels = c(1, 0, 1, 1)
)
pevals1 <- calc_measures(cmats)
pevals2 <- calc_measures(
scores = c(0.1, 0.2, 0.2, 0),
labels = c(1, 0, 1, 1)
)
expect_equal(pevals1, pevals2)
})
test_that("calc_measures() accepts arguments for reformat_data()", {
err_msg <- "Invalid arguments: na.rm"
expect_error(
calc_measures(
scores = c(0.1, 0.2, 0.2, 0),
labels = c(1, 0, 1, 1), na.rm = TRUE
),
err_msg
)
pevals <- calc_measures(
scores = c(0.1, 0.2, 0),
labels = c(1, 0, 1),
na_worst = TRUE,
ties_method = "first",
keep_fmdat = TRUE
)
expect_equal(.get_obj_arg(pevals, "fmdat", "na_worst"), TRUE)
expect_equal(.get_obj_arg(pevals, "fmdat", "ties_method"), "first")
})
test_that("calc_measures() accepts na_worst argument", {
expect_equal_ranks <- function(scores, na_worst, ranks) {
pevals <- calc_measures(
scores = scores,
labels = c(1, 0, 1),
na_worst = na_worst,
keep_fmdat = TRUE
)
fmdat <- .get_obj(pevals, "fmdat")
expect_equal(.get_obj_arg(pevals, NULL, "na_worst"), na_worst)
expect_equal(.get_obj_arg(fmdat, NULL, "na_worst"), na_worst)
expect_equal(fmdat[["ranks"]], ranks)
sranks <- .rank_scores(scores, na_worst = na_worst)
expect_equal(sranks[["ranks"]], ranks)
}
na1_scores <- c(NA, 0.2, 0.1)
na2_scores <- c(0.2, NA, 0.1)
na3_scores <- c(0.2, 0.1, NA)
expect_equal_ranks(na1_scores, TRUE, c(3, 1, 2))
expect_equal_ranks(na1_scores, FALSE, c(1, 2, 3))
expect_equal_ranks(na2_scores, TRUE, c(1, 3, 2))
expect_equal_ranks(na2_scores, FALSE, c(2, 1, 3))
expect_equal_ranks(na3_scores, TRUE, c(1, 2, 3))
expect_equal_ranks(na3_scores, FALSE, c(2, 3, 1))
})
test_that("calc_measures() accepts ties_method argument", {
expect_equal_ranks <- function(ties_method, ranks) {
pevals <- calc_measures(
scores = c(0.1, 0.2, 0.2, 0.2, 0.3),
labels = c(1, 0, 1, 1, 1),
ties_method = ties_method,
keep_fmdat = TRUE
)
fmdat <- .get_obj(pevals, "fmdat")
expect_equal(.get_obj_arg(pevals, NULL, "ties_method"), ties_method)
expect_equal(.get_obj_arg(fmdat, NULL, "ties_method"), ties_method)
expect_equal(fmdat[["ranks"]], ranks)
}
expect_equal_ranks("equiv", c(5, 2, 2, 2, 1))
expect_equal_ranks("first", c(5, 2, 3, 4, 1))
})
test_that("'pevals' contains a list with 1 item", {
pevals <- calc_measures(scores = c(0.1, 0.2, 0), labels = c(1, 0, 1))
expect_true(is.list(pevals))
expect_equal(length(pevals), 1)
})
test_that("calc_measures() reterns correct evaluation values", {
pevals <- calc_measures(
scores = c(0.1, 0.2, 0, 0.3),
labels = c(1, 0, 0, 1)
)
pb <- pevals[["basic"]]
# "TPs" c(0, 1, 1, 2, 2)
# "FNs" c(2, 1, 1, 0, 0)
# "FPs" c(0, 0, 1, 1, 2)
# "TNs" c(2, 2, 1, 1, 0)
expect_equal(pb[["error"]], c(0.5, 0.25, 0.5, 0.25, 0.5))
expect_equal(pb[["accuracy"]], c(0.5, 0.75, 0.5, 0.75, 0.5))
expect_equal(pb[["specificity"]], c(1, 1, 0.5, 0.5, 0))
expect_equal(pb[["sensitivity"]], c(0, 0.5, 0.5, 1, 1))
expect_equal(pb[["precision"]], c(1, 1, 0.5, 2 / 3, 0.5))
expect_equal(pb[["mcc"]], c(NA, 0.5773503, 0, 0.5773503, NA),
tolerance = 1e-4
)
expect_equal(pb[["fscore"]], c(0, 2 / 3, 0.5, 0.8, 2 / 3), tolerance = 1e-4)
})
pl4_create_ms_dat <- function() {
s1 <- c(1, 2, 3, 4)
s2 <- c(5, 6, 7, 8)
s3 <- c(2, 4, 6, 8)
scores <- join_scores(s1, s2, s3)
l1 <- c(1, 0, 1, 1)
l2 <- c(0, 1, 1, 1)
l3 <- c(1, 1, 0, 1)
labels <- join_labels(l1, l2, l3)
list(scores = scores, labels = labels)
}
pl4_create_sm_dat <- function() {
s1 <- c(1, 2, 3, 4)
s2 <- c(5, 6, 7, 8)
s3 <- c(2, 4, 6, 8)
scores <- join_scores(s1, s2, s3)
l1 <- c(1, 0, 1, 1)
l2 <- c(0, 1, 1, 1)
l3 <- c(1, 1, 0, 1)
labels <- join_labels(l1, l2, l3)
list(scores = scores, labels = labels)
}
pl4_create_mm_dat <- function() {
s1 <- c(1, 2, 3, 4)
s2 <- c(5, 6, 7, 8)
s3 <- c(2, 4, 6, 8)
s4 <- c(2, 4, 6, 8)
scores <- join_scores(s1, s2, s3, s4)
l1 <- c(1, 0, 1, 1)
l2 <- c(0, 1, 1, 1)
l3 <- c(1, 1, 0, 1)
l4 <- c(1, 1, 0, 1)
labels <- join_labels(l1, l2, l3, l4)
list(scores = scores, labels = labels)
}
test_that("ss test data", {
pevals <- calc_measures(
scores = c(1, 2, 3, 4),
labels = c(1, 0, 1, 0)
)
pb <- pevals[["basic"]]
expect_equal(pb[["error"]], c(0.5, 0.75, 0.5, 0.75, 0.5))
expect_equal(pb[["accuracy"]], c(0.5, 0.25, 0.5, 0.25, 0.5))
expect_equal(pb[["specificity"]], c(1, 0.5, 0.5, 0, 0))
expect_equal(pb[["sensitivity"]], c(0, 0, 0.5, 0.5, 1))
expect_equal(pb[["precision"]], c(0, 0, 0.5, 1 / 3, 0.5))
expect_equal(pb[["mcc"]], c(NA, -0.5773503, 0, -0.5773503, NA),
tolerance = 1e-4
)
expect_equal(pb[["fscore"]], c(0, 0, 0.5, 0.4, 2 / 3), tolerance = 1e-4)
})
test_that("ms test data", {
msdat <- pl4_create_ms_dat()
pevals1 <- calc_measures(
scores = msdat[["scores"]][[1]],
labels = msdat[["labels"]][[1]]
)
pb1 <- pevals1[["basic"]]
expect_equal(pb1[["error"]], c(0.75, 0.5, 0.25, 0.5, 0.25))
expect_equal(pb1[["accuracy"]], c(0.25, 0.5, 0.75, 0.5, 0.75))
expect_equal(pb1[["specificity"]], c(1, 1, 1, 0, 0))
expect_equal(pb1[["sensitivity"]], c(0, 1 / 3, 2 / 3, 2 / 3, 1))
expect_equal(pb1[["precision"]], c(1, 1, 1, 2 / 3, 0.75))
expect_equal(pb1[["mcc"]], c(NA, 1 / 3, 0.5773503, -1 / 3, NA),
tolerance = 1e-4
)
expect_equal(pb1[["fscore"]], c(0, 0.5, 0.8, 2 / 3, 0.8571429),
tolerance = 1e-4
)
pevals2 <- calc_measures(
scores = msdat[["scores"]][[2]],
labels = msdat[["labels"]][[2]]
)
pb2 <- pevals2[["basic"]]
expect_equal(pb2[["error"]], c(0.75, 0.5, 0.25, 0, 0.25))
expect_equal(pb2[["accuracy"]], c(0.25, 0.5, 0.75, 1, 0.75))
expect_equal(pb2[["specificity"]], c(1, 1, 1, 1, 0))
expect_equal(pb2[["sensitivity"]], c(0, 1 / 3, 2 / 3, 1, 1))
expect_equal(pb2[["precision"]], c(1, 1, 1, 1, 0.75))
expect_equal(pb2[["mcc"]], c(NA, 1 / 3, 0.5773503, 1, NA),
tolerance = 1e-4
)
expect_equal(pb2[["fscore"]], c(0, 0.5, 0.8, 1, 0.8571429), tolerance = 1e-4)
pevals3 <- calc_measures(
scores = msdat[["scores"]][[3]],
labels = msdat[["labels"]][[3]]
)
pb3 <- pevals3[["basic"]]
expect_equal(pb3[["error"]], c(0.75, 0.5, 0.75, 0.5, 0.25))
expect_equal(pb3[["accuracy"]], c(0.25, 0.5, 0.25, 0.5, 0.75))
expect_equal(pb3[["specificity"]], c(1, 1, 0, 0, 0))
expect_equal(pb3[["sensitivity"]], c(0, 1 / 3, 1 / 3, 2 / 3, 1))
expect_equal(pb3[["precision"]], c(1, 1, 0.5, 2 / 3, 0.75))
expect_equal(pb3[["mcc"]], c(NA, 1 / 3, -0.5773503, -1 / 3, NA),
tolerance = 1e-4
)
expect_equal(pb3[["fscore"]], c(0, 0.5, 0.4, 2 / 3, 0.8571429),
tolerance = 1e-4
)
})
test_that("sm test data", {
smdat <- pl4_create_sm_dat()
pevals1 <- calc_measures(
scores = smdat[["scores"]][[1]],
labels = smdat[["labels"]][[1]]
)
pb1 <- pevals1[["basic"]]
expect_equal(pb1[["error"]], c(0.75, 0.5, 0.25, 0.5, 0.25))
expect_equal(pb1[["accuracy"]], c(0.25, 0.5, 0.75, 0.5, 0.75))
expect_equal(pb1[["specificity"]], c(1, 1, 1, 0, 0))
expect_equal(pb1[["sensitivity"]], c(0, 1 / 3, 2 / 3, 2 / 3, 1))
expect_equal(pb1[["precision"]], c(1, 1, 1, 2 / 3, 0.75))
expect_equal(pb1[["mcc"]], c(NA, 1 / 3, 0.5773503, -1 / 3, NA),
tolerance = 1e-4
)
expect_equal(pb1[["fscore"]], c(0, 0.5, 0.8, 2 / 3, 0.8571429),
tolerance = 1e-4
)
pevals2 <- calc_measures(
scores = smdat[["scores"]][[2]],
labels = smdat[["labels"]][[2]]
)
pb2 <- pevals2[["basic"]]
expect_equal(pb2[["error"]], c(0.75, 0.5, 0.25, 0, 0.25))
expect_equal(pb2[["accuracy"]], c(0.25, 0.5, 0.75, 1, 0.75))
expect_equal(pb2[["specificity"]], c(1, 1, 1, 1, 0))
expect_equal(pb2[["sensitivity"]], c(0, 1 / 3, 2 / 3, 1, 1))
expect_equal(pb2[["precision"]], c(1, 1, 1, 1, 0.75))
expect_equal(pb2[["mcc"]], c(NA, 1 / 3, 0.5773503, 1, NA),
tolerance = 1e-4
)
expect_equal(pb2[["fscore"]], c(0, 0.5, 0.8, 1, 0.8571429), tolerance = 1e-4)
pevals3 <- calc_measures(
scores = smdat[["scores"]][[3]],
labels = smdat[["labels"]][[3]]
)
pb3 <- pevals3[["basic"]]
expect_equal(pb3[["error"]], c(0.75, 0.5, 0.75, 0.5, 0.25))
expect_equal(pb3[["accuracy"]], c(0.25, 0.5, 0.25, 0.5, 0.75))
expect_equal(pb3[["specificity"]], c(1, 1, 0, 0, 0))
expect_equal(pb3[["sensitivity"]], c(0, 1 / 3, 1 / 3, 2 / 3, 1))
expect_equal(pb3[["precision"]], c(1, 1, 0.5, 2 / 3, 0.75))
expect_equal(pb3[["mcc"]], c(NA, 1 / 3, -0.5773503, -1 / 3, NA),
tolerance = 1e-4
)
expect_equal(pb3[["fscore"]], c(0, 0.5, 0.4, 2 / 3, 0.8571429),
tolerance = 1e-4
)
})
test_that("mm test data", {
mmdat <- pl4_create_mm_dat()
pevals1 <- calc_measures(
scores = mmdat[["scores"]][[1]],
labels = mmdat[["labels"]][[1]]
)
pb1 <- pevals1[["basic"]]
expect_equal(pb1[["error"]], c(0.75, 0.5, 0.25, 0.5, 0.25))
expect_equal(pb1[["accuracy"]], c(0.25, 0.5, 0.75, 0.5, 0.75))
expect_equal(pb1[["specificity"]], c(1, 1, 1, 0, 0))
expect_equal(pb1[["sensitivity"]], c(0, 1 / 3, 2 / 3, 2 / 3, 1))
expect_equal(pb1[["precision"]], c(1, 1, 1, 2 / 3, 0.75))
expect_equal(pb1[["mcc"]], c(NA, 1 / 3, 0.5773503, -1 / 3, NA),
tolerance = 1e-4
)
expect_equal(pb1[["fscore"]], c(0, 0.5, 0.8, 2 / 3, 0.8571429),
tolerance = 1e-4
)
pevals2 <- calc_measures(
scores = mmdat[["scores"]][[2]],
labels = mmdat[["labels"]][[2]]
)
pb2 <- pevals2[["basic"]]
expect_equal(pb2[["error"]], c(0.75, 0.5, 0.25, 0, 0.25))
expect_equal(pb2[["accuracy"]], c(0.25, 0.5, 0.75, 1, 0.75))
expect_equal(pb2[["specificity"]], c(1, 1, 1, 1, 0))
expect_equal(pb2[["sensitivity"]], c(0, 1 / 3, 2 / 3, 1, 1))
expect_equal(pb2[["precision"]], c(1, 1, 1, 1, 0.75))
expect_equal(pb2[["mcc"]], c(NA, 1 / 3, 0.5773503, 1, NA),
tolerance = 1e-4
)
expect_equal(pb2[["fscore"]], c(0, 0.5, 0.8, 1, 0.8571429), tolerance = 1e-4)
pevals3 <- calc_measures(
scores = mmdat[["scores"]][[3]],
labels = mmdat[["labels"]][[3]]
)
pb3 <- pevals3[["basic"]]
expect_equal(pb3[["error"]], c(0.75, 0.5, 0.75, 0.5, 0.25))
expect_equal(pb3[["accuracy"]], c(0.25, 0.5, 0.25, 0.5, 0.75))
expect_equal(pb3[["specificity"]], c(1, 1, 0, 0, 0))
expect_equal(pb3[["sensitivity"]], c(0, 1 / 3, 1 / 3, 2 / 3, 1))
expect_equal(pb3[["precision"]], c(1, 1, 0.5, 2 / 3, 0.75))
expect_equal(pb3[["mcc"]], c(NA, 1 / 3, -0.5773503, -1 / 3, NA),
tolerance = 1e-4
)
expect_equal(pb3[["fscore"]], c(0, 0.5, 0.4, 2 / 3, 0.8571429),
tolerance = 1e-4
)
pevals4 <- calc_measures(
scores = mmdat[["scores"]][[3]],
labels = mmdat[["labels"]][[3]]
)
pb4 <- pevals4[["basic"]]
expect_equal(pb4[["error"]], c(0.75, 0.5, 0.75, 0.5, 0.25))
expect_equal(pb4[["accuracy"]], c(0.25, 0.5, 0.25, 0.5, 0.75))
expect_equal(pb4[["specificity"]], c(1, 1, 0, 0, 0))
expect_equal(pb4[["sensitivity"]], c(0, 1 / 3, 1 / 3, 2 / 3, 1))
expect_equal(pb4[["precision"]], c(1, 1, 0.5, 2 / 3, 0.75))
expect_equal(pb4[["mcc"]], c(NA, 1 / 3, -0.5773503, -1 / 3, NA),
tolerance = 1e-4
)
expect_equal(pb4[["fscore"]], c(0, 0.5, 0.4, 2 / 3, 0.8571429),
tolerance = 1e-4
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.