#' risk_h3
#'
#' risk h3 identifies epidemiological scenarios based on historical epidemiological and entomological information.
#'
#' @param betas It is the dataset of the regression coefficients of the geostatistical model with INLA-SPDE. The betas are calculated with the deneggs package.
#' @param hotspots It is the database of the results of the hotspots analysis with the local statistician Getis&Ord. Hotspots are calculated with the denhotspots package.
#' @param intensity_perc It is the percentage of intensity of egg hotspots.
#' @param locality is the locality name.
#' @param cve_edo is the id of state.
#'
#' @return a sf object.
#' @export
#' @author Felipe Antonio Dzul Manzanilla \email{felipe.dzul.m@gmail.com}
#' @seealso \link[deneggs]{eggs_hotspots}, \link[deneggs]{spde_pred_map}, \link[deneggs]{eggs_hotspots_week} & @seealso \link[INLA]{inla}
#' @examples
risk_h3 <- function(betas, hotspots, intensity_perc, locality, cve_edo){
# extract the locality ####
locality <- rgeomex::extract_locality(locality = locality,
cve_edo = cve_edo)
# extract the hotspots of locality ####
hotspots <- hotspots[locality, ]
# extract the betas of locality
x <- betas |>
dplyr::mutate(long = x,
lat = y) |>
sf::st_as_sf(coords = c("long", "lat"),
crs = 4326)
x <- x[locality, ] |>
sf::st_drop_geometry()
intensity_function <- function(x){
x |>
dplyr::mutate(hotspots_binary = ifelse(hotspots == "Hotspots", 1, 0))|>
dplyr::select(x, y, week, hotspots_binary)|>
tidyr::pivot_wider(id_cols = c(x, y),
names_from = "week",
names_prefix = "week_",
values_from = "hotspots_binary") |>
dplyr::mutate(intensity = rowMeans(dplyr::across(dplyr::starts_with("week_")))) |>
dplyr::select(x, y, intensity)
}
# step 2.2 apply the function
x <- x |>
dplyr::group_by(year) |>
tidyr::nest() |>
dplyr::mutate(intensity = purrr::map(data,intensity_function))|>
dplyr::select(-data)|>
tidyr::unnest(cols = c(intensity))|>
dplyr::arrange(dplyr::desc(intensity))|>
as.data.frame() |>
sf::st_as_sf(coords = c("x", "y"),
crs = 4326)
# 3. riesgo ####
# Step 3.1 extract the hotspots and no hotspots of locality
loc_hotspots <- hotspots|>
dplyr::filter(hotspots_gi >= 1)
loc_hotspots_no <- hotspots|>
dplyr::filter(hotspots_gi == 0)
# Step 3.2 extract the very high risk
risk_a_eggs <- sf::st_intersection(x = x |> dplyr::filter(intensity >= intensity_perc/100),
y = loc_hotspots)
risk_a_agebs <- loc_hotspots[risk_a_eggs, ]|>
dplyr::mutate(risk = "Muy Alto Riesgo")
# Steo 3.3 extract the high risk
#risk_b_agebs <- sf::st_difference(x = loc_hotspots, y = sf::st_union(risk_a_agebs))|>
# dplyr::mutate(risk = "Alto Riesgo")
risk_b_agebs <- loc_hotspots |>
dplyr::filter(!h3 %in% c(risk_a_agebs$h3)) |>
dplyr::mutate(risk = "Alto Riesgo")
# Step 3.4 extract the medium risk
risk_c_eggs <- sf::st_intersection(x = x |>
dplyr::filter(intensity >= intensity_perc/100),
y = hotspots |>
dplyr::filter(hotspots_gi == 0))
risk_c_agebs <- loc_hotspots_no[risk_c_eggs,] |>
dplyr::mutate(risk = "Mediano Riesgo")
# Step 3.4 extract the low risk
a <- rbind(risk_a_agebs, risk_b_agebs, risk_c_agebs)
risk_d_agebs <- hotspots|>
dplyr::filter(!h3 %in% c(a$h3)) |>
dplyr::mutate(risk = "Bajo Riesgo")
# Step 3.5 row binding dataset
risk <- rbind(a, risk_d_agebs)
# Step 3.6 add the label risk
risk$risk <- factor(risk$risk,
labels = c("Riesgo Alto"," Riesgo Bajo",
"Riesgo Mediano", "Riesgo Muy Alto")[c(4,1, 3,2)],
levels = c("Alto Riesgo","Bajo Riesgo",
"Mediano Riesgo", "Muy Alto Riesgo")[c(4,1, 3,2)])
risk
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.