R/glmm_sample_size_eggs.R

Defines functions glmm_sample_size_eggs

#' Generalized Linear Mixed Model (GLMM) for sample size eggs.
#'
#' @param x is the dataframe object for apply the GLMM.
#' @param fam is the name of family distribution.
#' @param aproximation is the Laplace approximation for the hyperparameter option. The options valid are "gaussian", "simplied.laplace" and "laplace".
#' @param integration is the different exploration schemes for the numerical integratio. The option valid are "grid", "eb" and "ccd".
#'
#' @return a INLA object.
#' @export
#'
#' @examples
glmm_sample_size_eggs <- function(x, fam, aproximation, integration){
    hyper.prec <- list(theta = list(prior = "pc.prec",
                                    param = c(1, 0.5)))
    x$n <- factor(x$n)
    x$n <- relevel(x$n, ref = "4")
    INLA::inla(formula = eggs ~ n +
                   f(sector, model = "iid",  hyper = hyper.prec)+
                   f(manzana, model = "iid",  hyper = hyper.prec)+
                   f(loc, model = "iid",  hyper = hyper.prec) +
                   f(mpo, model = "iid",  hyper = hyper.prec),
               family = fam,
               data  = x,
               verbose = TRUE,
               num.threads = 1,
               control.inla = list(strategy = aproximation,
                                   int.strategy = integration),
               control.compute = list(dic = TRUE, waic = TRUE),
               control.predictor = list(compute = TRUE,  link = 1))
}
fdzul/phdfadm documentation built on Aug. 27, 2020, 1:45 a.m.