newmodel-class | R Documentation |
Objects of this class store all the values needed to work with a negative binomial model, as described in the vignette. They contain all information to fit a model by penalized maximum likelihood or simulate data from a model.
## S4 method for signature 'newmodel' show(object) ## S4 method for signature 'newmodel' numberSamples(x) ## S4 method for signature 'newmodel' numberFeatures(x) ## S4 method for signature 'newmodel' numberFactors(x) ## S4 method for signature 'newmodel' newX(object) ## S4 method for signature 'newmodel' newV(object) ## S4 method for signature 'newmodel' newLogMu(object) ## S4 method for signature 'newmodel' newMu(object) ## S4 method for signature 'newmodel' newZeta(object) ## S4 method for signature 'newmodel' newPhi(object) ## S4 method for signature 'newmodel' newTheta(object) ## S4 method for signature 'newmodel' newEpsilon_beta(object) ## S4 method for signature 'newmodel' newEpsilon_gamma(object) ## S4 method for signature 'newmodel' newEpsilon_W(object) ## S4 method for signature 'newmodel' newEpsilon_alpha(object) ## S4 method for signature 'newmodel' newEpsilon_zeta(object) ## S4 method for signature 'newmodel' newW(object) ## S4 method for signature 'newmodel' newBeta(object) ## S4 method for signature 'newmodel' newGamma(object) ## S4 method for signature 'newmodel' newAlpha(object)
object |
an object of class |
x |
an object of class |
For the full description of the model see the model vignette.
Internally, the slots are checked so that the matrices are of the
appropriate dimensions: in particular, X
, O
and W
need to have n
rows, V
needs to have J
rows, zeta
must be of length J
.
numberSamples
returns the number of samples;
numberFeatures
returns the number of features;
numberFactors
returns the number of latent factors.
show
: show useful info on the object.
numberSamples
: returns the number of samples.
numberFeatures
: returns the number of features.
numberFactors
: returns the number of latent factors.
newX
: returns the sample-level design matrix for mu.
newV
: returns the gene-level design matrix for mu.
newLogMu
: returns the logarithm of the mean of the non-zero
component.
newMu
: returns the mean of the non-zero component.
newZeta
: returns the log of the inverse of the dispersion
parameter.
newPhi
: returns the dispersion parameter.
newTheta
: returns the inverse of the dispersion parameter.
newEpsilon_beta
: returns the regularization parameters for
beta
.
newEpsilon_gamma
: returns the regularization parameters for
gamma
.
newEpsilon_W
: returns the regularization parameters for
W
.
newEpsilon_alpha
: returns the regularization parameters for
alpha
.
newEpsilon_zeta
: returns the regularization parameters for
zeta
.
newW
: returns the matrix W of inferred sample-level
covariates.
newBeta
: returns the matrix beta of inferred parameters.
newGamma
: returns the matrix gamma of inferred parameters.
newAlpha
: returns the matrix alpha of inferred parameters.
X
matrix. The design matrix containing sample-level covariates, one sample per row.
V
matrix. The design matrix containing gene-level covariates, one gene per row.
X_intercept
logical. TRUE if X contains an intercept.
V_intercept
logical. TRUE if V contains an intercept.
W
matrix. The factors of sample-level latent factors.
beta
matrix or NULL. The coefficients of X in the regression.
gamma
matrix or NULL. The coefficients of V in the regression.
alpha
matrix. The weight of sample-level latent factors.
zeta
numeric. A vector of log of inverse dispersion parameters.
epsilon_beta
nonnegative scalar. Regularization parameter for beta
epsilon_gamma
nonnegative scalar. Regularization parameter for gamma
epsilon_W
nonnegative scalar. Regularization parameter for W
epsilon_alpha
nonnegative scalar. Regularization parameter for alpha
epsilon_zeta
nonnegative scalar. Regularization parameter for zeta
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.