| newmodel-class | R Documentation |
Objects of this class store all the values needed to work with a negative binomial model, as described in the vignette. They contain all information to fit a model by penalized maximum likelihood or simulate data from a model.
## S4 method for signature 'newmodel' show(object) ## S4 method for signature 'newmodel' numberSamples(x) ## S4 method for signature 'newmodel' numberFeatures(x) ## S4 method for signature 'newmodel' numberFactors(x) ## S4 method for signature 'newmodel' newX(object) ## S4 method for signature 'newmodel' newV(object) ## S4 method for signature 'newmodel' newLogMu(object) ## S4 method for signature 'newmodel' newMu(object) ## S4 method for signature 'newmodel' newZeta(object) ## S4 method for signature 'newmodel' newPhi(object) ## S4 method for signature 'newmodel' newTheta(object) ## S4 method for signature 'newmodel' newEpsilon_beta(object) ## S4 method for signature 'newmodel' newEpsilon_gamma(object) ## S4 method for signature 'newmodel' newEpsilon_W(object) ## S4 method for signature 'newmodel' newEpsilon_alpha(object) ## S4 method for signature 'newmodel' newEpsilon_zeta(object) ## S4 method for signature 'newmodel' newW(object) ## S4 method for signature 'newmodel' newBeta(object) ## S4 method for signature 'newmodel' newGamma(object) ## S4 method for signature 'newmodel' newAlpha(object)
object |
an object of class |
x |
an object of class |
For the full description of the model see the model vignette.
Internally, the slots are checked so that the matrices are of the
appropriate dimensions: in particular, X, O
and W need to have n rows, V needs to have J
rows, zeta must be of length J.
numberSamples returns the number of samples;
numberFeaturesreturns the number of features;
numberFactors returns the number of latent factors.
show: show useful info on the object.
numberSamples: returns the number of samples.
numberFeatures: returns the number of features.
numberFactors: returns the number of latent factors.
newX: returns the sample-level design matrix for mu.
newV: returns the gene-level design matrix for mu.
newLogMu: returns the logarithm of the mean of the non-zero
component.
newMu: returns the mean of the non-zero component.
newZeta: returns the log of the inverse of the dispersion
parameter.
newPhi: returns the dispersion parameter.
newTheta: returns the inverse of the dispersion parameter.
newEpsilon_beta: returns the regularization parameters for
beta.
newEpsilon_gamma: returns the regularization parameters for
gamma.
newEpsilon_W: returns the regularization parameters for
W.
newEpsilon_alpha: returns the regularization parameters for
alpha.
newEpsilon_zeta: returns the regularization parameters for
zeta.
newW: returns the matrix W of inferred sample-level
covariates.
newBeta: returns the matrix beta of inferred parameters.
newGamma: returns the matrix gamma of inferred parameters.
newAlpha: returns the matrix alpha of inferred parameters.
Xmatrix. The design matrix containing sample-level covariates, one sample per row.
Vmatrix. The design matrix containing gene-level covariates, one gene per row.
X_interceptlogical. TRUE if X contains an intercept.
V_interceptlogical. TRUE if V contains an intercept.
Wmatrix. The factors of sample-level latent factors.
betamatrix or NULL. The coefficients of X in the regression.
gammamatrix or NULL. The coefficients of V in the regression.
alphamatrix. The weight of sample-level latent factors.
zetanumeric. A vector of log of inverse dispersion parameters.
epsilon_betanonnegative scalar. Regularization parameter for beta
epsilon_gammanonnegative scalar. Regularization parameter for gamma
epsilon_Wnonnegative scalar. Regularization parameter for W
epsilon_alphanonnegative scalar. Regularization parameter for alpha
epsilon_zetanonnegative scalar. Regularization parameter for zeta
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.