knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
First, we generate the spatial transcriptomics data with lattice neighborhood, i.e. ST platform by using the function gendata_RNAExp
in DR.SC
package, which is a Seurat object format. It is noted that the meta.data
must include spatial coordinates in columns named "row" (x coordinates) and "col" (y coordinates)!
library(DR.SC) seu <- gendata_RNAExp(height=30, width=30,p=500, K=4) head(seu@meta.data)
This preprocessing includes Log-normalization and feature selection. Here we select highly variable genes for example first. The selected genes' names are saved in "seu@assays$RNA@var.features"
### Given K library(Seurat) seu <- NormalizeData(seu) # choose highly variable features using Seurat seu <- FindVariableFeatures(seu, nfeatures = 400)
For function DR.SC
, users can specify the number of clusters $K$ or set K
to be an integer vector by using modified BIC(MBIC) to determine $K$. First, we try using user-specified number of clusters. Then we show the version chosen by MBIC.
### Given K seu2 <- DR.SC(seu, q=30, K=4, platform = 'ST', verbose=F, approxPCA=T)
After finishing model fitting, we use ajusted rand index (ARI
) to check the performance of clustering
mclust::adjustedRandIndex(seu2$spatial.drsc.cluster, seu$true_clusters)
Next, we show the application of DR-SC in visualization. First, we can visualize the clusters from DR-SC on the spatial coordinates.
spatialPlotClusters(seu2)
We can also visualize the clusters from DR-SC on the two-dimensional tSNE based on the extracted features from DR-SC.
drscPlot(seu2)
Show the UMAP plot based on the extracted features from DR-SC.
drscPlot(seu2, visu.method = 'UMAP')
Use MBIC to choose number of clusters:
seu2 <- DR.SC(seu, q=10, K=2:6, platform = 'ST', verbose=F,approxPCA=T) mbicPlot(seu2)
First, we select the spatilly variable genes using funciton FindSVGs
.
### Given K seu <- NormalizeData(seu, verbose=F) # choose 400 spatially variable features using FindSVGs seus <- FindSVGs(seu, nfeatures = 400, verbose = F) seu2 <- DR.SC(seus, q=4, K=4, platform = 'ST', verbose=F)
Using ARI to check the performance of clustering
mclust::adjustedRandIndex(seu2$spatial.drsc.cluster, seu$true_clusters)
Show the spatial scatter plot for clusters
spatialPlotClusters(seu2)
Show the tSNE plot based on the extracted features from DR-SC.
drscPlot(seu2)
Show the UMAP plot based on the extracted features from DR-SC.
drscPlot(seu2, visu.method = 'UMAP')
Use MBIC to choose number of clusters:
seu2 <- DR.SC(seus, q=4, K=2:6, platform = 'ST', verbose=F) mbicPlot(seu2) # or plot BIC or AIC # mbicPlot(seu2, criteria = 'BIC') # mbicPlot(seu2, criteria = 'AIC') # tune pen.const seu2 <- selectModel(seu2, pen.const = 0.7) mbicPlot(seu2)
Conduct visualization of marker gene expression.
Visualize single cell expression distributions in each cluster from Seruat.
dat <- FindAllMarkers(seu2) suppressPackageStartupMessages(library(dplyr) ) # Find the top 1 marker genes, user can change n to access more marker genes dat %>%group_by(cluster) %>% top_n(n = 1, wt = avg_log2FC) -> top genes <- top$gene RidgePlot(seu2, features = genes, ncol = 2)
Visualize single cell expression distributions in each cluster
VlnPlot(seu2, features = genes, ncol=2)
We extract tSNE based on the features from DR-SC and then visualize feature expression in the low-dimensional space
seu2 <- RunTSNE(seu2, reduction="dr-sc", reduction.key='drsctSNE_') FeaturePlot(seu2, features = genes, reduction = 'tsne' ,ncol=2)
The size of the dot corresponds to the percentage of cells expressing the feature in each cluster. The color represents the average expression level
DotPlot(seu2, features = genes)
Single cell heatmap of feature expression
# standard scaling (no regression) dat %>%group_by(cluster) %>% top_n(n = 30, wt = avg_log2FC) -> top ### select the marker genes that are also the variable genes. genes <- intersect(top$gene, seu2[['RNA']]@var.features) ## Change the HVGs to SVGs # <- topSVGs(seu2, 400) seu2 <- ScaleData(seu2, verbose = F) DoHeatmap(subset(seu2, downsample = 500),features = genes, size = 5)
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.