require(magrittr)
require(dplyr)
.getDirectCentrifugeClassificationsSummaries <- function(centrifugeClassifications = NULL) {
directClassificationsSummaries <- centrifugeClassifications %>%
subset(standardId %>% is.na == F) %>%
group_by(rank, standardId) %>%
summarize(directNumberOfSequences = n(),
directScoreMean = mean(score),
directScoreSD = sd(score),
directScoreCI = qnorm(0.975) * sd(score) / sqrt(n()),
directScoreMedian = median(score),
directScoreQ1 = quantile(score, 0.25),
directScoreQ3 = quantile(score, 0.75),
directScoreIQR = IQR(score),
directScoreMAD = mad(score),
directScoreNonNormalMAD = mad(score, constant = 1 / quantile(score, 0.75)),
directX2ndBestScoreMean = mean(X2ndBestScore),
directX2ndBestScoreSD = sd(X2ndBestScore),
directX2ndBestScoreCI = qnorm(0.975) * sd(X2ndBestScore) / sqrt(n()),
directX2ndBestScoreMedian = median(X2ndBestScore),
directX2ndBestScoreQ1 = quantile(X2ndBestScore, 0.25),
directX2ndBestScoreQ3 = quantile(X2ndBestScore, 0.75),
directX2ndBestScoreIQR = IQR(X2ndBestScore),
directX2ndBestScoreMAD = mad(X2ndBestScore),
directX2ndBestScoreNonNormalMAD = mad(X2ndBestScore, constant = 1 / quantile(X2ndBestScore, 0.75)),
directHitLengthMean = mean(hitLength),
directHitLengthSD = sd(hitLength),
directHitLengthCI = qnorm(0.975) * sd(hitLength) / sqrt(n()),
directHitLengthMedian = median(hitLength),
directHitLengthQ1 = quantile(hitLength, 0.25),
directHitLengthQ3 = quantile(hitLength, 0.75),
directHitLengthIQR = IQR(hitLength),
directHitLengthMAD = mad(hitLength),
directHitLengthNonNormalMAD = mad(hitLength, constant = 1 / quantile(hitLength, 0.75)),
directQueryLengthMean = mean(queryLength),
directQueryLengthSD = sd(queryLength),
directQueryLengthCI = qnorm(0.975) * sd(queryLength) / sqrt(n()),
directQueryLengthMedian = median(queryLength),
directQueryLengthQ1 = quantile(queryLength, 0.25),
directQueryLengthQ3 = quantile(queryLength, 0.75),
directQueryLengthIQR = IQR(queryLength),
directQueryLengthMAD = mad(queryLength),
directQueryLengthNonNormalMAD = mad(queryLength, constant = 1 / quantile(queryLength, 0.75)),
directNumMatchesMean = mean(numMatches),
directNumMatchesSD = sd(numMatches),
directNumMatchesCI = qnorm(0.975) * sd(numMatches) / sqrt(n()),
directNumMatchesMedian = median(numMatches),
directNumMatchesQ1 = quantile(numMatches, 0.25),
directNumMatchesQ3 = quantile(numMatches, 0.75),
directNumMatchesIQR = IQR(numMatches),
directNumMatchesMAD = mad(numMatches),
directNumMatchesNonNormalMAD = mad(numMatches, constant = 1 / quantile(numMatches, 0.75))
)
return(directClassificationsSummaries)
}
.getSpeciesMappedCentrifugeClassificationsSummaries <- function(centrifugeClassifications = NULL) {
speciesClassificationsSummaries <- centrifugeClassifications %>%
subset(speciesId %>% is.na == F) %>%
group_by(speciesId) %>%
summarize(mappedNumberOfSequences = n(),
mappedScoreMean = mean(score),
mappedScoreSD = sd(score),
mappedScoreCI = qnorm(0.975) * sd(score) / sqrt(n()),
mappedScoreMedian = median(score),
mappedScoreQ1 = quantile(score, 0.25),
mappedScoreQ3 = quantile(score, 0.75),
mappedScoreIQR = IQR(score),
mappedScoreMAD = mad(score),
mappedScoreNonNormalMAD = mad(score, constant = 1 / quantile(score, 0.75)),
mappedX2ndBestScoreMean = mean(X2ndBestScore),
mappedX2ndBestScoreSD = sd(X2ndBestScore),
mappedX2ndBestScoreCI = qnorm(0.975) * sd(X2ndBestScore) / sqrt(n()),
mappedX2ndBestScoreMedian = median(X2ndBestScore),
mappedX2ndBestScoreQ1 = quantile(X2ndBestScore, 0.25),
mappedX2ndBestScoreQ3 = quantile(X2ndBestScore, 0.75),
mappedX2ndBestScoreIQR = IQR(X2ndBestScore),
mappedX2ndBestScoreMAD = mad(X2ndBestScore),
mappedX2ndBestScoreNonNormalMAD = mad(X2ndBestScore, constant = 1 / quantile(X2ndBestScore, 0.75)),
mappedHitLengthMean = mean(hitLength),
mappedHitLengthSD = sd(hitLength),
mappedHitLengthCI = qnorm(0.975) * sd(hitLength) / sqrt(n()),
mappedHitLengthMedian = median(hitLength),
mappedHitLengthQ1 = quantile(hitLength, 0.25),
mappedHitLengthQ3 = quantile(hitLength, 0.75),
mappedHitLengthIQR = IQR(hitLength),
mappedHitLengthMAD = mad(hitLength),
mappedHitLengthNonNormalMAD = mad(hitLength, constant = 1 / quantile(hitLength, 0.75)),
mappedQueryLengthMean = mean(queryLength),
mappedQueryLengthSD = sd(queryLength),
mappedQueryLengthCI = qnorm(0.975) * sd(queryLength) / sqrt(n()),
mappedQueryLengthMedian = median(queryLength),
mappedQueryLengthQ1 = quantile(queryLength, 0.25),
mappedQueryLengthQ3 = quantile(queryLength, 0.75),
mappedQueryLengthIQR = IQR(queryLength),
mappedQueryLengthMAD = mad(queryLength),
mappedQueryLengthNonNormalMAD = mad(queryLength, constant = 1 / quantile(queryLength, 0.75)),
mappedNumMatchesMean = mean(numMatches),
mappedNumMatchesSD = sd(numMatches),
mappedNumMatchesCI = qnorm(0.975) * sd(numMatches) / sqrt(n()),
mappedNumMatchesMedian = median(numMatches),
mappedNumMatchesQ1 = quantile(numMatches, 0.25),
mappedNumMatchesQ3 = quantile(numMatches, 0.75),
mappedNumMatchesIQR = IQR(numMatches),
mappedNumMatchesMAD = mad(numMatches),
mappedNumMatchesNonNormalMAD = mad(numMatches, constant = 1 / quantile(numMatches, 0.75))
) %>%
rename(standardId = speciesId) %>%
mutate(rank = "species")
return(speciesClassificationsSummaries)
}
.getGenusMappedCentrifugeClassificationsSummaries <- function(centrifugeClassifications = NULL) {
genusClassificationsSummaries <- centrifugeClassifications %>%
subset(genusId %>% is.na == F) %>%
group_by(genusId) %>%
summarize(mappedNumberOfSequences = n(),
mappedScoreMean = mean(score),
mappedScoreSD = sd(score),
mappedScoreCI = qnorm(0.975) * sd(score) / sqrt(n()),
mappedScoreMedian = median(score),
mappedScoreQ1 = quantile(score, 0.25),
mappedScoreQ3 = quantile(score, 0.75),
mappedScoreIQR = IQR(score),
mappedScoreMAD = mad(score),
mappedScoreNonNormalMAD = mad(score, constant = 1 / quantile(score, 0.75)),
mappedX2ndBestScoreMean = mean(X2ndBestScore),
mappedX2ndBestScoreSD = sd(X2ndBestScore),
mappedX2ndBestScoreCI = qnorm(0.975) * sd(X2ndBestScore) / sqrt(n()),
mappedX2ndBestScoreMedian = median(X2ndBestScore),
mappedX2ndBestScoreQ1 = quantile(X2ndBestScore, 0.25),
mappedX2ndBestScoreQ3 = quantile(X2ndBestScore, 0.75),
mappedX2ndBestScoreIQR = IQR(X2ndBestScore),
mappedX2ndBestScoreMAD = mad(X2ndBestScore),
mappedX2ndBestScoreNonNormalMAD = mad(X2ndBestScore, constant = 1 / quantile(X2ndBestScore, 0.75)),
mappedHitLengthMean = mean(hitLength),
mappedHitLengthSD = sd(hitLength),
mappedHitLengthCI = qnorm(0.975) * sd(hitLength) / sqrt(n()),
mappedHitLengthMedian = median(hitLength),
mappedHitLengthQ1 = quantile(hitLength, 0.25),
mappedHitLengthQ3 = quantile(hitLength, 0.75),
mappedHitLengthIQR = IQR(hitLength),
mappedHitLengthMAD = mad(hitLength),
mappedHitLengthNonNormalMAD = mad(hitLength, constant = 1 / quantile(hitLength, 0.75)),
mappedQueryLengthMean = mean(queryLength),
mappedQueryLengthSD = sd(queryLength),
mappedQueryLengthCI = qnorm(0.975) * sd(queryLength) / sqrt(n()),
mappedQueryLengthMedian = median(queryLength),
mappedQueryLengthQ1 = quantile(queryLength, 0.25),
mappedQueryLengthQ3 = quantile(queryLength, 0.75),
mappedQueryLengthIQR = IQR(queryLength),
mappedQueryLengthMAD = mad(queryLength),
mappedQueryLengthNonNormalMAD = mad(queryLength, constant = 1 / quantile(queryLength, 0.75)),
mappedNumMatchesMean = mean(numMatches),
mappedNumMatchesSD = sd(numMatches),
mappedNumMatchesCI = qnorm(0.975) * sd(numMatches) / sqrt(n()),
mappedNumMatchesMedian = median(numMatches),
mappedNumMatchesQ1 = quantile(numMatches, 0.25),
mappedNumMatchesQ3 = quantile(numMatches, 0.75),
mappedNumMatchesIQR = IQR(numMatches),
mappedNumMatchesMAD = mad(numMatches),
mappedNumMatchesNonNormalMAD = mad(numMatches, constant = 1 / quantile(numMatches, 0.75))
) %>%
rename(standardId = genusId) %>%
mutate(rank = "genus")
return(genusClassificationsSummaries)
}
.getFamilyMappedCentrifugeClassificationsSummaries <- function(centrifugeClassifications = NULL) {
familyClassificationsSummaries <- centrifugeClassifications %>%
subset(familyId %>% is.na == F) %>%
group_by(familyId) %>%
summarize(mappedNumberOfSequences = n(),
mappedScoreMean = mean(score),
mappedScoreSD = sd(score),
mappedScoreCI = qnorm(0.975) * sd(score) / sqrt(n()),
mappedScoreMedian = median(score),
mappedScoreQ1 = quantile(score, 0.25),
mappedScoreQ3 = quantile(score, 0.75),
mappedScoreIQR = IQR(score),
mappedScoreMAD = mad(score),
mappedScoreNonNormalMAD = mad(score, constant = 1 / quantile(score, 0.75)),
mappedX2ndBestScoreMean = mean(X2ndBestScore),
mappedX2ndBestScoreSD = sd(X2ndBestScore),
mappedX2ndBestScoreCI = qnorm(0.975) * sd(X2ndBestScore) / sqrt(n()),
mappedX2ndBestScoreMedian = median(X2ndBestScore),
mappedX2ndBestScoreQ1 = quantile(X2ndBestScore, 0.25),
mappedX2ndBestScoreQ3 = quantile(X2ndBestScore, 0.75),
mappedX2ndBestScoreIQR = IQR(X2ndBestScore),
mappedX2ndBestScoreMAD = mad(X2ndBestScore),
mappedX2ndBestScoreNonNormalMAD = mad(X2ndBestScore, constant = 1 / quantile(X2ndBestScore, 0.75)),
mappedHitLengthMean = mean(hitLength),
mappedHitLengthSD = sd(hitLength),
mappedHitLengthCI = qnorm(0.975) * sd(hitLength) / sqrt(n()),
mappedHitLengthMedian = median(hitLength),
mappedHitLengthQ1 = quantile(hitLength, 0.25),
mappedHitLengthQ3 = quantile(hitLength, 0.75),
mappedHitLengthIQR = IQR(hitLength),
mappedHitLengthMAD = mad(hitLength),
mappedHitLengthNonNormalMAD = mad(hitLength, constant = 1 / quantile(hitLength, 0.75)),
mappedQueryLengthMean = mean(queryLength),
mappedQueryLengthSD = sd(queryLength),
mappedQueryLengthCI = qnorm(0.975) * sd(queryLength) / sqrt(n()),
mappedQueryLengthMedian = median(queryLength),
mappedQueryLengthQ1 = quantile(queryLength, 0.25),
mappedQueryLengthQ3 = quantile(queryLength, 0.75),
mappedQueryLengthIQR = IQR(queryLength),
mappedQueryLengthMAD = mad(queryLength),
mappedQueryLengthNonNormalMAD = mad(queryLength, constant = 1 / quantile(queryLength, 0.75)),
mappedNumMatchesMean = mean(numMatches),
mappedNumMatchesSD = sd(numMatches),
mappedNumMatchesCI = qnorm(0.975) * sd(numMatches) / sqrt(n()),
mappedNumMatchesMedian = median(numMatches),
mappedNumMatchesQ1 = quantile(numMatches, 0.25),
mappedNumMatchesQ3 = quantile(numMatches, 0.75),
mappedNumMatchesIQR = IQR(numMatches),
mappedNumMatchesMAD = mad(numMatches),
mappedNumMatchesNonNormalMAD = mad(numMatches, constant = 1 / quantile(numMatches, 0.75))
) %>%
rename(standardId = familyId) %>%
mutate(rank = "family")
return(familyClassificationsSummaries)
}
.getOrderMappedCentrifugeClassificationsSummaries <- function(centrifugeClassifications = NULL) {
orderClassificationsSummaries <- centrifugeClassifications %>%
subset(orderId %>% is.na == F) %>%
group_by(orderId) %>%
summarize(mappedNumberOfSequences = n(),
mappedScoreMean = mean(score),
mappedScoreSD = sd(score),
mappedScoreCI = qnorm(0.975) * sd(score) / sqrt(n()),
mappedScoreMedian = median(score),
mappedScoreQ1 = quantile(score, 0.25),
mappedScoreQ3 = quantile(score, 0.75),
mappedScoreIQR = IQR(score),
mappedScoreMAD = mad(score),
mappedScoreNonNormalMAD = mad(score, constant = 1 / quantile(score, 0.75)),
mappedX2ndBestScoreMean = mean(X2ndBestScore),
mappedX2ndBestScoreSD = sd(X2ndBestScore),
mappedX2ndBestScoreCI = qnorm(0.975) * sd(X2ndBestScore) / sqrt(n()),
mappedX2ndBestScoreMedian = median(X2ndBestScore),
mappedX2ndBestScoreQ1 = quantile(X2ndBestScore, 0.25),
mappedX2ndBestScoreQ3 = quantile(X2ndBestScore, 0.75),
mappedX2ndBestScoreIQR = IQR(X2ndBestScore),
mappedX2ndBestScoreMAD = mad(X2ndBestScore),
mappedX2ndBestScoreNonNormalMAD = mad(X2ndBestScore, constant = 1 / quantile(X2ndBestScore, 0.75)),
mappedHitLengthMean = mean(hitLength),
mappedHitLengthSD = sd(hitLength),
mappedHitLengthCI = qnorm(0.975) * sd(hitLength) / sqrt(n()),
mappedHitLengthMedian = median(hitLength),
mappedHitLengthQ1 = quantile(hitLength, 0.25),
mappedHitLengthQ3 = quantile(hitLength, 0.75),
mappedHitLengthIQR = IQR(hitLength),
mappedHitLengthMAD = mad(hitLength),
mappedHitLengthNonNormalMAD = mad(hitLength, constant = 1 / quantile(hitLength, 0.75)),
mappedQueryLengthMean = mean(queryLength),
mappedQueryLengthSD = sd(queryLength),
mappedQueryLengthCI = qnorm(0.975) * sd(queryLength) / sqrt(n()),
mappedQueryLengthMedian = median(queryLength),
mappedQueryLengthQ1 = quantile(queryLength, 0.25),
mappedQueryLengthQ3 = quantile(queryLength, 0.75),
mappedQueryLengthIQR = IQR(queryLength),
mappedQueryLengthMAD = mad(queryLength),
mappedQueryLengthNonNormalMAD = mad(queryLength, constant = 1 / quantile(queryLength, 0.75)),
mappedNumMatchesMean = mean(numMatches),
mappedNumMatchesSD = sd(numMatches),
mappedNumMatchesCI = qnorm(0.975) * sd(numMatches) / sqrt(n()),
mappedNumMatchesMedian = median(numMatches),
mappedNumMatchesQ1 = quantile(numMatches, 0.25),
mappedNumMatchesQ3 = quantile(numMatches, 0.75),
mappedNumMatchesIQR = IQR(numMatches),
mappedNumMatchesMAD = mad(numMatches),
mappedNumMatchesNonNormalMAD = mad(numMatches, constant = 1 / quantile(numMatches, 0.75))
) %>%
rename(standardId = orderId) %>%
mutate(rank = "order")
return(orderClassificationsSummaries)
}
.getClassMappedCentrifugeClassificationsSummaries <- function(centrifugeClassifications = NULL) {
classClassificationsSummaries <- centrifugeClassifications %>%
subset(classId %>% is.na == F) %>%
group_by(classId) %>%
summarize(mappedNumberOfSequences = n(),
mappedScoreMean = mean(score),
mappedScoreSD = sd(score),
mappedScoreCI = qnorm(0.975) * sd(score) / sqrt(n()),
mappedScoreMedian = median(score),
mappedScoreQ1 = quantile(score, 0.25),
mappedScoreQ3 = quantile(score, 0.75),
mappedScoreIQR = IQR(score),
mappedScoreMAD = mad(score),
mappedScoreNonNormalMAD = mad(score, constant = 1 / quantile(score, 0.75)),
mappedX2ndBestScoreMean = mean(X2ndBestScore),
mappedX2ndBestScoreSD = sd(X2ndBestScore),
mappedX2ndBestScoreCI = qnorm(0.975) * sd(X2ndBestScore) / sqrt(n()),
mappedX2ndBestScoreMedian = median(X2ndBestScore),
mappedX2ndBestScoreQ1 = quantile(X2ndBestScore, 0.25),
mappedX2ndBestScoreQ3 = quantile(X2ndBestScore, 0.75),
mappedX2ndBestScoreIQR = IQR(X2ndBestScore),
mappedX2ndBestScoreMAD = mad(X2ndBestScore),
mappedX2ndBestScoreNonNormalMAD = mad(X2ndBestScore, constant = 1 / quantile(X2ndBestScore, 0.75)),
mappedHitLengthMean = mean(hitLength),
mappedHitLengthSD = sd(hitLength),
mappedHitLengthCI = qnorm(0.975) * sd(hitLength) / sqrt(n()),
mappedHitLengthMedian = median(hitLength),
mappedHitLengthQ1 = quantile(hitLength, 0.25),
mappedHitLengthQ3 = quantile(hitLength, 0.75),
mappedHitLengthIQR = IQR(hitLength),
mappedHitLengthMAD = mad(hitLength),
mappedHitLengthNonNormalMAD = mad(hitLength, constant = 1 / quantile(hitLength, 0.75)),
mappedQueryLengthMean = mean(queryLength),
mappedQueryLengthSD = sd(queryLength),
mappedQueryLengthCI = qnorm(0.975) * sd(queryLength) / sqrt(n()),
mappedQueryLengthMedian = median(queryLength),
mappedQueryLengthQ1 = quantile(queryLength, 0.25),
mappedQueryLengthQ3 = quantile(queryLength, 0.75),
mappedQueryLengthIQR = IQR(queryLength),
mappedQueryLengthMAD = mad(queryLength),
mappedQueryLengthNonNormalMAD = mad(queryLength, constant = 1 / quantile(queryLength, 0.75)),
mappedNumMatchesMean = mean(numMatches),
mappedNumMatchesSD = sd(numMatches),
mappedNumMatchesCI = qnorm(0.975) * sd(numMatches) / sqrt(n()),
mappedNumMatchesMedian = median(numMatches),
mappedNumMatchesQ1 = quantile(numMatches, 0.25),
mappedNumMatchesQ3 = quantile(numMatches, 0.75),
mappedNumMatchesIQR = IQR(numMatches),
mappedNumMatchesMAD = mad(numMatches),
mappedNumMatchesNonNormalMAD = mad(numMatches, constant = 1 / quantile(numMatches, 0.75))
) %>%
rename(standardId = classId) %>%
mutate(rank = "class")
return(classClassificationsSummaries)
}
.getPhylumMappedCentrifugeClassificationsSummaries <- function(centrifugeClassifications = NULL) {
phylumClassificationsSummaries <- centrifugeClassifications %>%
subset(phylumId %>% is.na == F) %>%
group_by(phylumId) %>%
summarize(mappedNumberOfSequences = n(),
mappedScoreMean = mean(score),
mappedScoreSD = sd(score),
mappedScoreCI = qnorm(0.975) * sd(score) / sqrt(n()),
mappedScoreMedian = median(score),
mappedScoreQ1 = quantile(score, 0.25),
mappedScoreQ3 = quantile(score, 0.75),
mappedScoreIQR = IQR(score),
mappedScoreMAD = mad(score),
mappedScoreNonNormalMAD = mad(score, constant = 1 / quantile(score, 0.75)),
mappedX2ndBestScoreMean = mean(X2ndBestScore),
mappedX2ndBestScoreSD = sd(X2ndBestScore),
mappedX2ndBestScoreCI = qnorm(0.975) * sd(X2ndBestScore) / sqrt(n()),
mappedX2ndBestScoreMedian = median(X2ndBestScore),
mappedX2ndBestScoreQ1 = quantile(X2ndBestScore, 0.25),
mappedX2ndBestScoreQ3 = quantile(X2ndBestScore, 0.75),
mappedX2ndBestScoreIQR = IQR(X2ndBestScore),
mappedX2ndBestScoreMAD = mad(X2ndBestScore),
mappedX2ndBestScoreNonNormalMAD = mad(X2ndBestScore, constant = 1 / quantile(X2ndBestScore, 0.75)),
mappedHitLengthMean = mean(hitLength),
mappedHitLengthSD = sd(hitLength),
mappedHitLengthCI = qnorm(0.975) * sd(hitLength) / sqrt(n()),
mappedHitLengthMedian = median(hitLength),
mappedHitLengthQ1 = quantile(hitLength, 0.25),
mappedHitLengthQ3 = quantile(hitLength, 0.75),
mappedHitLengthIQR = IQR(hitLength),
mappedHitLengthMAD = mad(hitLength),
mappedHitLengthNonNormalMAD = mad(hitLength, constant = 1 / quantile(hitLength, 0.75)),
mappedQueryLengthMean = mean(queryLength),
mappedQueryLengthSD = sd(queryLength),
mappedQueryLengthCI = qnorm(0.975) * sd(queryLength) / sqrt(n()),
mappedQueryLengthMedian = median(queryLength),
mappedQueryLengthQ1 = quantile(queryLength, 0.25),
mappedQueryLengthQ3 = quantile(queryLength, 0.75),
mappedQueryLengthIQR = IQR(queryLength),
mappedQueryLengthMAD = mad(queryLength),
mappedQueryLengthNonNormalMAD = mad(queryLength, constant = 1 / quantile(queryLength, 0.75)),
mappedNumMatchesMean = mean(numMatches),
mappedNumMatchesSD = sd(numMatches),
mappedNumMatchesCI = qnorm(0.975) * sd(numMatches) / sqrt(n()),
mappedNumMatchesMedian = median(numMatches),
mappedNumMatchesQ1 = quantile(numMatches, 0.25),
mappedNumMatchesQ3 = quantile(numMatches, 0.75),
mappedNumMatchesIQR = IQR(numMatches),
mappedNumMatchesMAD = mad(numMatches),
mappedNumMatchesNonNormalMAD = mad(numMatches, constant = 1 / quantile(numMatches, 0.75))
) %>%
rename(standardId = phylumId) %>%
mutate(rank = "phylum")
return(phylumClassificationsSummaries)
}
.getSuperkingdomMappedCentrifugeClassificationsSummaries <- function(centrifugeClassifications = NULL) {
superkingdomClassificationsSummaries <- centrifugeClassifications %>%
subset(superkingdomId %>% is.na == F) %>%
group_by(superkingdomId) %>%
summarize(mappedNumberOfSequences = n(),
mappedScoreMean = mean(score),
mappedScoreSD = sd(score),
mappedScoreCI = qnorm(0.975) * sd(score) / sqrt(n()),
mappedScoreMedian = median(score),
mappedScoreQ1 = quantile(score, 0.25),
mappedScoreQ3 = quantile(score, 0.75),
mappedScoreIQR = IQR(score),
mappedScoreMAD = mad(score),
mappedScoreNonNormalMAD = mad(score, constant = 1 / quantile(score, 0.75)),
mappedX2ndBestScoreMean = mean(X2ndBestScore),
mappedX2ndBestScoreSD = sd(X2ndBestScore),
mappedX2ndBestScoreCI = qnorm(0.975) * sd(X2ndBestScore) / sqrt(n()),
mappedX2ndBestScoreMedian = median(X2ndBestScore),
mappedX2ndBestScoreQ1 = quantile(X2ndBestScore, 0.25),
mappedX2ndBestScoreQ3 = quantile(X2ndBestScore, 0.75),
mappedX2ndBestScoreIQR = IQR(X2ndBestScore),
mappedX2ndBestScoreMAD = mad(X2ndBestScore),
mappedX2ndBestScoreNonNormalMAD = mad(X2ndBestScore, constant = 1 / quantile(X2ndBestScore, 0.75)),
mappedHitLengthMean = mean(hitLength),
mappedHitLengthSD = sd(hitLength),
mappedHitLengthCI = qnorm(0.975) * sd(hitLength) / sqrt(n()),
mappedHitLengthMedian = median(hitLength),
mappedHitLengthQ1 = quantile(hitLength, 0.25),
mappedHitLengthQ3 = quantile(hitLength, 0.75),
mappedHitLengthIQR = IQR(hitLength),
mappedHitLengthMAD = mad(hitLength),
mappedHitLengthNonNormalMAD = mad(hitLength, constant = 1 / quantile(hitLength, 0.75)),
mappedQueryLengthMean = mean(queryLength),
mappedQueryLengthSD = sd(queryLength),
mappedQueryLengthCI = qnorm(0.975) * sd(queryLength) / sqrt(n()),
mappedQueryLengthMedian = median(queryLength),
mappedQueryLengthQ1 = quantile(queryLength, 0.25),
mappedQueryLengthQ3 = quantile(queryLength, 0.75),
mappedQueryLengthIQR = IQR(queryLength),
mappedQueryLengthMAD = mad(queryLength),
mappedQueryLengthNonNormalMAD = mad(queryLength, constant = 1 / quantile(queryLength, 0.75)),
mappedNumMatchesMean = mean(numMatches),
mappedNumMatchesSD = sd(numMatches),
mappedNumMatchesCI = qnorm(0.975) * sd(numMatches) / sqrt(n()),
mappedNumMatchesMedian = median(numMatches),
mappedNumMatchesQ1 = quantile(numMatches, 0.25),
mappedNumMatchesQ3 = quantile(numMatches, 0.75),
mappedNumMatchesIQR = IQR(numMatches),
mappedNumMatchesMAD = mad(numMatches),
mappedNumMatchesNonNormalMAD = mad(numMatches, constant = 1 / quantile(numMatches, 0.75))
) %>%
rename(standardId = superkingdomId) %>%
mutate(rank = "superkingdom")
return(superkingdomClassificationsSummaries)
}
#'
#'
#' @param centrifugeClassifications
summarizeCentrifugeClassifications <- function(centrifugeClassifications = NULL) {
directClassificationsSummaries <- .getDirectCentrifugeClassificationsSummaries(centrifugeClassifications)
superkingdomClassificationsSummaries <- .getSuperkingdomMappedCentrifugeClassificationsSummaries(centrifugeClassifications)
phylumClassificationsSummaries <- .getPhylumMappedCentrifugeClassificationsSummaries(centrifugeClassifications)
classClassificationsSummaries <- .getClassMappedCentrifugeClassificationsSummaries(centrifugeClassifications)
orderClassificationsSummaries <- .getOrderMappedCentrifugeClassificationsSummaries(centrifugeClassifications)
familyClassificationsSummaries <- .getFamilyMappedCentrifugeClassificationsSummaries(centrifugeClassifications)
genusClassificationsSummaries <- .getGenusMappedCentrifugeClassificationsSummaries(centrifugeClassifications)
speciesClassificationsSummaries <- .getSpeciesMappedCentrifugeClassificationsSummaries(centrifugeClassifications)
mappedClassificationsSummaries <- rbind(
superkingdomClassificationsSummaries,
phylumClassificationsSummaries,
classClassificationsSummaries,
orderClassificationsSummaries,
familyClassificationsSummaries,
genusClassificationsSummaries,
speciesClassificationsSummaries
)
centrifugeClassificationsSummaries <- directClassificationsSummaries %>%
merge(mappedClassificationsSummaries, by = c("rank", "standardId"), all = T)
return(centrifugeClassificationsSummaries)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.