#' A collection of gradient for common priors.
#'
#' The parameters after "..." should be matched exactly.
#' @param B "matrix". The paramter that need to be added with a prior. The gradient and
#' hessian are calculated conditional on B. B should be always an one-column matrix,
#' @param priorArgs "list". priorArgs$prior_type: when prior_type is set to "mvnorm",
#' you have to provide priorArgs$mean: "matrix", the mean of parameter, mu0 should be
#' always an one-column matrix; priorArgs$covariance: "matrix", the covariance
#' matrix. A g-prior can be constructed by setting it to X'X, where X is the
#' covariates matrix.; priorArgs$shrinkage: "numeric", the shrinkage for the
#' covariance.
#'
#' @param hessMethod NA
#' @return "list". The gradient and hessian matrix, see below. `gradObsPri`
#' "matrix". One-colunm. `hessObsPri` "matrix". A squre matrix. Dimension same as
#' prior_type$Sigma0.
#'
#' @references NA
#' @author Feng Li, Department of Statistics, Stockholm University, Sweden.
#' @export
deriv_prior <- function(B, priorArgs, hessMethod)
{
if (tolower(priorArgs$prior_type) == "mvnorm") # vecB ~ N(mean, shrinkage*covariance)
{
mean <- priorArgs$mean
covariance <- priorArgs$covariance
shrinkage <- priorArgs$shrinkage
gradient.out <- (- 1/shrinkage * ginv(covariance) %*% (B-mean)) # TODO:
## if(is(gradient.out, "try-error")) browser()
if(tolower(hessMethod) == "exact")
{
hessian.out <- - 1/shrinkage * ginv(covariance)
}
else
{
hessian.out = NA
}
}#
out <- list(gradObsPri = gradient.out, hessObsPri = hessian.out)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.