appTEKRABber | R Documentation |
Provide a shiny UI for presenting the results from DE analysis and correlation analysis.
appTEKRABber(corrRef, corrCompare, DEobject)
corrRef |
correlation results for reference using corrOrtholgScale() |
corrCompare |
correlation results for comparison using corrOrthologScale() |
DEobject |
DE object using DEgeneTE() |
provide an interactive shinyapp
data(speciesCounts)
hmGene <- speciesCounts$hmGene
hmTE <- speciesCounts$hmTE
chimpGene <- speciesCounts$chimpGene
chimpTE <- speciesCounts$chimpTE
data(fetchDataHmChimp)
fetchData <- fetchDataHmChimp
inputBundle <- DECorrInputs(fetchData)
meta <- data.frame(
species = c(rep("human", ncol(hmGene) - 1),
rep("chimpanzee", ncol(chimpGene) - 1)))
meta$species <- factor(meta$species, levels = c("human", "chimpanzee"))
rownames(meta) <- colnames(inputBundle$geneInputDESeq2)
hmchimpDE <- DEgeneTE(
geneTable = inputBundle$geneInputDESeq2,
teTable = inputBundle$teInputDESeq2,
metadata = meta,
expDesign = TRUE)
# use only 10 rows of Genes and TEs
hmCorrResult <- corrOrthologTE(
geneInput = hmchimpDE$geneCorrInputRef[c(1:10),],
teInput = hmchimpDE$teCorrInputRef[c(1:10),],
corrMethod = "pearson",
padjMethod = "fdr")
chimpCorrResult <- corrOrthologTE(
geneInput = hmchimpDE$geneCorrInputCompare[c(1:10), ],
teInput = hmchimpDE$teCorrInputCompare[c(1:10), ],
corrMethod = "pearson",
padjMethod = "fdr")
#library(plotly)
#appTEKRABber(
#corrRef = hmCorrResult,
#corrCompare = chimpCorrResult,
#DEobject = hmchimpDE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.