appTEKRABber | R Documentation |
To help user explore their results using TEKRABber, this function visualizes the results using a self-written shiny app with two tabs, including the expression and correlation of genes and TEs. To run it, you need to create four variables and assign them with your DE result, correlation results and metadata to appDE, appRef, appCompare and appMeta. Please see the example below for more details.
appTEKRABber()
An app to display differentially expressed genes/TEs and the correlation results
data(fetchDataHmChimp) fetchData <- fetchDataHmChimp inputBundle <- DECorrInputs(fetchData) # create metadata for DE analysis meta <- data.frame(species=c(rep("human", ncol(fetchData$geneRef) - 1), rep("chimpanzee", ncol(fetchData$geneCompare) - 1)) ) rownames(meta) <- colnames(inputBundle$geneInputDESeq2) meta$species <- factor(meta$species, levels = c("human", "chimpanzee")) # DE analysis hmchimpDE <- DEgeneTE( geneTable = inputBundle$geneInputDESeq2, teTable = inputBundle$teInputDESeq2, metadata = meta, expDesign = TRUE ) data(speciesCorr) hmGeneCorrInput <- assay_tekcorrset(speciesCorr, "gene", "human") hmTECorrInput <- assay_tekcorrset(speciesCorr, "te", "human") chimpGeneCorrInput <- assay_tekcorrset(speciesCorr, "gene", "chimpanzee") chimpTECorrInput <- assay_tekcorrset(speciesCorr, "te", "chimpanzee") # Correlation analysis hmCorrResult <- corrOrthologTE( geneInput = hmGeneCorrInput, teInput = hmTECorrInput, corrMethod = "pearson", padjMethod = "fdr" ) chimpCorrResult <- corrOrthologTE( geneInput = chimpGeneCorrInput, teInput = chimpTECorrInput, corrMethod = "pearson", padjMethod = "fdr" ) # assign results and metadata to appDE, appRef, appCompare, and appMeta appDE <- hmchimpDE appRef <- hmCorrResult appCompare <- chimpCorrResult appMeta <- meta if (interactive()){ appTEKRABber() }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.