#' Summarise vms data
#'
#' Provides some summary statistics on key variables of the imported and
#' standarized vms data.
#'
#' @param d A standardized vms dataframe
#'
#' @return A dataframe
#' @export
#'
vms_data_summary <- function(d) {
d %>%
dplyr::mutate(day = lubridate::day(date)) %>%
dplyr::summarise(Date.minimum = min(date, na.rm = TRUE),
Date.maximum = max(date, na.rm = TRUE),
Date.range = lubridate::as_date(Date.maximum) - lubridate::as_date(Date.minimum) + 1,
Date.distinct = dplyr::n_distinct(day),
Date.missing = sum(is.na(date)),
Longitude.minimum = min(lon, na.rm = TRUE),
Longitude.maximum = max(lon, na.rm = TRUE),
Longitude.missing = sum(is.na(lon)),
Latitude.minimum = min(lat, na.rm = TRUE),
Latitude.maximum = max(lat, na.rm = TRUE),
Latitude.missing = sum(is.na(lat)),
Speed.minimum = min(speed, na.rm = TRUE),
Speed.maximum = max(speed, na.rm = TRUE),
Speed.missing = sum(is.na(speed)),
Vessel.distinct = dplyr::n_distinct(vid)) %>%
dplyr::mutate_all(as.character) %>%
tidyr::gather(variable, value) %>%
tidyr::separate(variable, c("variable", "statistics"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.