test_that("SearchGrid for glmnet_cv instance works", {
fps <- new_fit_param_specs_glmnet_cv()
fps["alpha"]$values <- c(0.0, 0.5, 1.0)
m <- new_model("glmnet_cv")
m$fit_param_specs <- fps
ms <- new_models(m)
o <- new_options(formulas, datasets_mc, seeds, ms, measure_mc,
show_progress = FALSE, keep_data = FALSE,
parallel = FALSE)
g <- new_search_grid(o, keys)
g
self <- g
private <- g$.__enclos_env__$private
expect_is(g$progress, "list")
expect_equal(g$progress_str, "0/3 (ttl: 0)")
expect_false(g$done)
expect_is(g$do(), "SearchGrid")
expect_equal(g$progress_str, "3/3 (ttl: 3)")
expect_true(g$done)
expect_is(g$get_rank(), "data.frame")
expect_is(g$get_best_param(), "list")
expect_is(g$get_count_by_param(), "data.frame")
## reset new fps
fps["alpha"]$values <- seq(2.0, 3.0, 0.1)
expect_null(g$result)
expect_equal(g$progress_str, "0/11 (ttl: 3)")
expect_error(g$get_rank())
expect_error(g$get_best_param())
expect_error(g$get_count_by_param())
## reset new fps
fps["alpha"]$values <- seq(0.0, 0.5, 0.1)
expect_equal(g$progress_str, "2/6 (ttl: 3)")
expect_is(g$do(), "SearchGrid")
expect_equal(g$progress_str, "6/6 (ttl: 7)")
expect_true(g$done)
## add new fps
fps["use_min"]$values <- c(0L, 1L)
expect_equal(g$progress_str, "6/12 (ttl: 7)")
expect_is(g$do(), "SearchGrid")
expect_equal(g$progress_str, "12/12 (ttl: 13)")
expect_true(g$done)
## remove fps
fps$remove("use_min")
expect_equal(g$progress_str, "6/6 (ttl: 13)")
expect_true(g$done)
})
test_that("SearchGrid for kernlab_rbf instance works", {
skip("Heavy test")
fps <- new_fit_param_specs_kernlab_rbf()
fps["sigma"]$values <- c(0.0, 1.0)
fps["C"]$values <- c(0.0, 1.0)
fps["epsilon"]$values <- c(0.1, 0.2)
keys["model"] <- "kernlab_rbf"
m <- new_model("kernlab_rbf", preproc_calls, NULL, fps)
ms <- new_models(m)
## Multiclass
o <- new_options(formulas, datasets_mc, seeds, ms, measure_mc,
show_progress = FALSE, keep_data = FALSE,
parallel = FALSE)
g <- new_search_grid(o, keys)
g$do()
expect_is(g$result, "data.frame")
## Regression
o <- new_options(formulas, datasets_reg, seeds, ms, measure_reg,
show_progress = FALSE, keep_data = FALSE,
parallel = FALSE)
g <- new_search_grid(o, keys)
g$do()
expect_is(g$result, "data.frame")
})
test_that("SearchGrid for kknn instance works", {
skip("Heavy test")
fps <- new_fit_param_specs_kknn()
fps["kmax"]$values <- c(11L, 15L)
fps["distance"]$values <- c(1.0, 2.0)
keys["model"] <- "kknn"
m <- new_model("kknn", preproc_calls, NULL, fps)
ms <- new_models(m)
## Multiclass
o <- new_options(formulas, datasets_mc, seeds, ms, measure_mc,
show_progress = FALSE, keep_data = FALSE,
parallel = FALSE)
g <- new_search_grid(o, keys)
g$do()
expect_is(g$result, "data.frame")
## Regression
o <- new_options(formulas, datasets_reg, seeds, ms, measure_reg,
show_progress = FALSE, keep_data = FALSE,
parallel = FALSE)
g <- new_search_grid(o, keys)
g$do()
expect_is(g$result, "data.frame")
})
test_that("SearchGrid for rpart instance works", {
skip("Heavy test")
fps <- new_fit_param_specs_rpart()
fps["cp"]$values <- c(-1.0, -2.0, -3.0)
fps["maxdepth"]$values <- c(10L, 20L, 30L)
fps["minsplit"]$values <- c(2L, 4L, 7L)
keys["model"] <- "rpart"
m <- new_model("rpart", preproc_calls, NULL, fps)
ms <- new_models(m)
## Multiclass
o <- new_options(formulas, datasets_mc, seeds, ms, measure_mc,
show_progress = FALSE, keep_data = FALSE,
parallel = FALSE)
g <- new_search_grid(o, keys)
g$do()
expect_is(g$result, "data.frame")
## Regression
o <- new_options(formulas, datasets_reg, seeds, ms, measure_reg,
show_progress = FALSE, keep_data = FALSE,
parallel = FALSE)
g <- new_search_grid(o, keys)
g$do()
expect_is(g$result, "data.frame")
})
test_that("SearchGrid for rangerinstance works", {
skip("Heavy test")
fps <- new_fit_param_specs_ranger("multiclass")
fps["num.trees"]$values <- c(500L, 1000L)
fps["mtry"]$values <- c(0.2, 0.3)
keys["model"] <- "ranger"
m <- new_model("ranger", preproc_calls, NULL, fps)
ms <- new_models(m)
## Multiclass
o <- new_options(formulas, datasets_mc, seeds, ms, measure_mc,
show_progress = FALSE, keep_data = FALSE,
parallel = FALSE)
g <- new_search_grid(o, keys)
g$do()
expect_is(g$result, "data.frame")
## Regression
fps <- new_fit_param_specs_ranger("regression")
fps["num.trees"]$values <- c(500L, 1000L)
fps["mtry"]$values <- c(0.2, 0.3)
m$fit_param_specs <- fps
o <- new_options(formulas, datasets_reg, seeds, ms, measure_reg,
show_progress = FALSE, keep_data = FALSE,
parallel = FALSE)
g <- new_search_grid(o, keys)
g$do()
expect_is(g$result, "data.frame")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.