test_that("glmnet_cv for multiclass classification works", {
keys_cv["model"] <- "glmnet_cv"
cv <- test_model(options_mc, keys_cv, "glmnet", pred_mc_col_names)
## normal prediction
test <- cv$convert_data(cv$test)$x
fitted <- cv$result$fits[[1L]]
pred <- predict(fitted, newx = test, type = "response")
pred <- cv$.__enclos_env__$private$.to_prob_nd(pred)
})
test_that("glmnet_cv for binary classification works", {
keys_cv["model"] <- "glmnet_cv"
cv <- test_model(options_bin, keys_cv, "glmnet", pred_bin_col_names)
## normal prediction
test <- cv$convert_data(cv$test)$x
fitted <- cv$result$fits[[1L]]
pred <- predict(fitted, newx = test, type = "response")
pred <- cv$.__enclos_env__$private$.to_prob_1d(pred)
})
test_that("glmnet_cv for regression works", {
keys_cv["model"] <- "glmnet_cv"
cv <- test_model(options_reg, keys_cv, "glmnet", pred_reg_col_names)
## normal prediction
test <- cv$convert_data(cv$test)$x
fitted <- cv$result$fits[[1L]]
pred <- predict(fitted, newx = test, type = "response")
pred <- cv$.__enclos_env__$private$.to_num_1d(pred)
})
test_that("glmnet_cv for poisson works", {
keys_cv["model"] <- "glmnet_cv"
cv <- test_model(options_pois, keys_cv, "glmnet", pred_reg_col_names)
## normal prediction
test <- cv$convert_data(cv$test)$x
fitted <- cv$result$fits[[1L]]
pred <- predict(fitted, newx = test, type = "response")
pred <- cv$.__enclos_env__$private$.to_num_1d(pred)
})
test_that("FitParamSpecs for glmnet_cv works", {
fps <- new_fit_param_specs_glmnet_cv()
expect_is(fps, "FitParamSpecs")
expect_equal(fps$keys, c("alpha", "use_min"))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.