test_that("keras_es for multiclass classification works", {
skip("heavy")
skip_if_not(keras::is_keras_available())
## tensorflow::tf$random$set_seed(seed)
model_keras_es$fit_params$add(
default_mc = list(keras_model = keras_model(), verbose = 0)
)
keys_cv["model"] <- "keras_es"
keys_cv["fit_param"] <- "default_mc"
cv <- test_model(options_mc, keys_cv, "keras.engine.training.Model",
pred_mc_col_names)
})
test_that("keras_es for binary classification works", {
skip("heavy")
skip_if_not(keras::is_keras_available())
## tensorflow::tf$random$set_seed(seed)
model_keras_es$fit_params$add(
default_bin = list(keras_model = keras_model(), verbose = 0)
)
keys_cv["model"] <- "keras_es"
keys_cv["fit_param"] <- "default_bin"
cv <- test_model(options_bin, keys_cv, "keras.engine.training.Model",
pred_bin_col_names)
})
test_that("keras_es for regression works", {
skip("heavy")
skip_if_not(keras::is_keras_available())
## tensorflow::tf$random$set_seed(seed)
model_keras_es$fit_params$add(
default_reg = list(keras_model = keras_model(), verbose = 0)
)
keys_cv["model"] <- "keras_es"
keys_cv["fit_param"] <- "default_reg"
cv <- test_model(options_reg, keys_cv, "keras.engine.training.Model",
pred_reg_col_names)
})
test_that("keras_es for poisson works", {
skip("heavy")
skip_if_not(keras::is_keras_available())
## tensorflow::tf$random$set_seed(seed)
model_keras_es$fit_params$add(
default_pois = list(keras_model = keras_model(), verbose = 0)
)
keys_cv["model"] <- "keras_es"
keys_cv["fit_param"] <- "default_pois"
cv <- test_model(options_pois, keys_cv, "keras.engine.training.Model",
pred_reg_col_names)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.