.sampleSizeSignificance_ <- function(zo,
power = NA,
d = NA,
level = 0.025,
alternative = c("one.sided", "two.sided"),
designPrior = c("conditional", "predictive", "EB"),
h = 0,
shrinkage = 0) {
stopifnot(is.numeric(zo),
length(zo) == 1,
is.finite(zo))
stopifnot(length(power) == 1,
length(d) == 1)
if (is.na(d) && is.na(power)) stop("either 'power' or 'd' has to be specified")
if (!is.na(d) && !is.na(power)) stop("only one of 'power' or 'd' has to be specified")
if (!is.na(d)) {
stopifnot(is.numeric(d),
is.finite(d))
} else { #!is.na(power)
stopifnot(is.numeric(power),
0 < power, power < 1)
}
stopifnot(is.numeric(level),
length(level) == 1,
is.finite(level),
0 < level, level < 1,
!is.null(alternative))
alternative <- match.arg(alternative)
stopifnot(!is.null(designPrior))
designPrior <- match.arg(designPrior)
stopifnot(is.numeric(h),
length(h) == 1,
is.finite(h),
0 <= h,
is.numeric(shrinkage),
length(shrinkage) == 1,
is.finite(shrinkage),
0 <= shrinkage, shrinkage < 1)
## sample size calculation based on power
if (is.na(d)) {
## only allow power > level
stopifnot(level < power)
u <- qnorm(p = power)
v <- p2z(p = level, alternative = alternative)
zoabs <- abs(zo)
## conditional
if (designPrior == "conditional") {
c <- (u + v)^2*(1/((1 - shrinkage)*zoabs))^2
} else {
## computing parameters
if (designPrior == "EB") {
shrinkage <- pmin((1 + h)/zoabs^2, 1)
H <- 1 - shrinkage + 2*h - shrinkage*h
} else {
H <- 1 + 2*h
}
## checking whether power larger than power limit
## powLim <- pnorm(q = (1 - shrinkage)*zoabs/sqrt(H))
## if (is.na(powLim) power > powLim) {
## c <- NaN
## warning(paste0("Power cannot be larger than ", round(powLim, 3)))
## } else {
if ((zoabs^2*(1 - shrinkage)^2 <= H*u^2) && power > 0.5) {
c <- NaN
} else {
zos <- (1 - shrinkage)*zoabs
num <- zos*v + u*sqrt(zos^2 + H*(v^2 - u^2))
denom <- zos^2 - u^2*H
sqrtc <- num/denom
if (is.na(sqrtc) || sqrtc < 0) {
c <- NaN
} else {
c <- sqrtc^2
}
}
}
} else { ## sample size calculation based on relative effect size
zalpha <- p2z(p = level, alternative = alternative)
c <- zalpha^2/(d^2*zo^2)
}
return(c)
}
#' Computes the required relative sample size to achieve significance
#' based on power or on the minimum relative effect size
#'
#' The relative sample size to achieve significance of the replication study is
#' computed based on the z-value of the original study, the significance level
#' and either the power or the minimum relative effect size. When the approach
#' based on power is used, the arguments design prior, shrinkage, and relative
#' heterogeneity also have to be specified.
#' @name sampleSizeSignificance
#' @rdname sampleSizeSignificance
#' @author Leonhard Held, Samuel Pawel, Charlotte Micheloud, Florian Gerber
#' @param zo A vector of z-values from original studies.
#' @param power The power to achieve replication success.
#' @param d The minimum relative effect size (ratio of the effect estimate from
#' the replication study to the effect estimate from the original study).
#' @param level Significance level. Default is 0.025.
#' @param alternative Either "one.sided" (default) or "two.sided". Specifies
#' direction of the alternative. "one.sided" assumes an effect in the same
#' direction as the original estimate.
#' @param designPrior Is only taken into account when \code{power} is specified.
#' Either "conditional" (default), "predictive", or "EB". If "EB", the power
#' is computed under a predictive distribution where the contribution of the
#' original study is shrunken towards zero based on the evidence in the
#' original study (with an empirical Bayes shrinkage estimator).
#' @param h Is only taken into account when \code{power} is specified and
#' \code{designPrior} is "predictive" or "EB". The relative between-study
#' heterogeneity, i.e., the ratio of the heterogeneity variance to the
#' variance of the original effect estimate. Default is 0 (no
#' heterogeneity).
#' @param shrinkage Is only taken into account when \code{power} is specified. A
#' number in [0,1) with default 0. Specifies the shrinkage of the original effect
#' towards zero (e.g., \code{shrinkage = 0.25} implies shrinkage by a
#' factor of 25\%). Is only taken into account when \code{designPrior} is
#' "conditional" or "predictive".
#' @return The relative sample size to achieve significance in the specified
#' direction. If impossible to achieve the desired power for specified
#' inputs \code{NaN} is returned.
#' @details \code{sampleSizeSignificance} is the vectorized version of
#' \code{.sampleSizeSignificance_}. \code{\link[base]{Vectorize}} is used to
#' vectorize the function.
#' @seealso \code{\link{powerSignificance}}
#' @references
#' Held, L. (2020). A new standard for the analysis and design of replication
#' studies (with discussion). \emph{Journal of the Royal Statistical Society:
#' Series A (Statistics in Society)}, \bold{183}, 431-448.
#' \doi{10.1111/rssa.12493}
#'
#' Pawel, S., Held, L. (2020). Probabilistic forecasting of replication studies.
#' \emph{PLoS ONE}. \bold{15}, e0231416. \doi{10.1371/journal.pone.0231416}
#'
#' Held, L., Micheloud, C., Pawel, S. (2021). The assessment of replication
#' success based on relative effect size. \url{https://arxiv.org/abs/2009.07782}
#' @examples
#' sampleSizeSignificance(zo = p2z(0.005), power = 0.8)
#' sampleSizeSignificance(zo = p2z(0.005, alternative = "two.sided"), power = 0.8)
#' sampleSizeSignificance(zo = p2z(0.005), power = 0.8, designPrior = "predictive")
#'
#' sampleSizeSignificance(zo = 3, power = 0.8, designPrior = "predictive",
#' shrinkage = 0.5, h = 0.25)
#' sampleSizeSignificance(zo = 3, power = 0.8, designPrior = "EB", h = 0.5)
#'
#' # sample size to achieve 0.8 power as function of original p-value
#' zo <- p2z(seq(0.0001, 0.05, 0.0001))
#' oldPar <- par(mfrow = c(1,2))
#' plot(z2p(zo), sampleSizeSignificance(zo = zo, designPrior = "conditional", power = 0.8),
#' type = "l", ylim = c(0.5, 10), log = "y", lwd = 1.5, ylab = "Relative sample size",
#' xlab = expression(italic(p)[o]), las = 1)
#' lines(z2p(zo), sampleSizeSignificance(zo = zo, designPrior = "predictive", power = 0.8),
#' lwd = 2, lty = 2)
#' lines(z2p(zo), sampleSizeSignificance(zo = zo, designPrior = "EB", power = 0.8),
#' lwd = 1.5, lty = 3)
#' legend("topleft", legend = c("conditional", "predictive", "EB"),
#' title = "Design prior", lty = c(1, 2, 3), lwd = 1.5, bty = "n")
#'
#' sampleSizeSignificance(zo = p2z(0.005), d = 1)
#' sampleSizeSignificance(zo = p2z(0.005), d = 0.5)
#' # sample size based on minimum relative effect size of 0.8
#' zo <- p2z(seq(0.0001, 0.05, 0.0001))
#' plot(z2p(zo), sampleSizeSignificance(zo = zo, d = 0.8, level = 0.025),
#' type = "l", ylim = c(0.5, 10), log = "y", lwd = 1.5, ylab = "Relative sample size",
#' xlab = expression(italic(p)[o]), las = 1)
#' par(oldPar)
#' @export
sampleSizeSignificance <- Vectorize(.sampleSizeSignificance_)
## Functions for numerical implementation
sampleSizeSignificanceTarget <- function(c, zo, level, power, alternative,
h, shrinkage, designPrior){
term <- powerSignificance(zo = zo,
c = c,
level = level,
designPrior = designPrior,
alternative = alternative,
h = h,
shrinkage = shrinkage)
return(term - power)
}
.sampleSizeSignificanceNum_ <- function(zo,
power = NA,
d = NA,
level = 0.025,
alternative = c("one.sided", "two.sided", "less", "greater"),
designPrior = c("conditional", "predictive", "EB"),
h = 0,
shrinkage = 0) {
stopifnot(is.numeric(zo),
length(zo) == 1,
is.finite(zo))
stopifnot(length(power) == 1,
length(d) == 1)
if (is.na(d) && is.na(power)) stop("either 'power' or 'd' has to be specified")
if (!is.na(d) && !is.na(power)) stop("only one of 'power' or 'd' has to be specified")
if (!is.na(d)) {
stopifnot(is.numeric(d),
is.finite(d))
} else { #!is.na(power)
stopifnot(is.numeric(power),
0 < power, power < 1)
}
stopifnot(is.numeric(level),
length(level) == 1,
is.finite(level),
0 < level, level < 1,
!is.null(alternative))
alternative <- match.arg(alternative)
stopifnot(!is.null(designPrior))
designPrior <- match.arg(designPrior)
stopifnot(is.numeric(h),
length(h) == 1,
is.finite(h),
0 <= h,
is.numeric(shrinkage),
length(shrinkage) == 1,
is.finite(shrinkage),
0 <= shrinkage, shrinkage < 1)
n.l <- 0
n.u <- 1000
## sample size calculation based on power
if (is.na(d)) {
s <- 1 - shrinkage
## for conditional designPrior use analytical solution
if (designPrior == "conditional") {
u <- qnorm(p = power)
v <- p2z(p = level, alternative = alternative)
c <- (u + v)^2*(1/(s*zo))^2
}
## for predictive and EB designPrior use uniroot
if (designPrior %in% c("predictive", "EB")) {
# compute upper bound of power
# if (designPrior == "EB") s <- pmax(1 - (1 + h)/zo^2, 0)
# power.limit <- pnorm(sqrt(1/(s*(1 + h) + h))*s*abs(zo))
# if (power > power.limit) {
# power.limit.r <- floor(power.limit * 1000)/1000
# warning(paste("power too large, power should not exceed",
# power.limit.r,
# "for a zo of",
# zo,
# "\n"))
# c <- NaN
# } else {
# check whether desired power can be achieved for max c = n.u
target.l <- sampleSizeSignificanceTarget(c = n.l,
zo = zo,
level = level,
power = power,
alternative = alternative,
h = h,
shrinkage = shrinkage,
designPrior = designPrior)
target.u <- sampleSizeSignificanceTarget(c = n.u,
zo = zo,
level = level,
power = power,
alternative = alternative,
h = h,
shrinkage = shrinkage,
designPrior = designPrior)
if (sign(target.l) == sign(target.u))
c <- NaN
# determine c to achieve desired power
else c <- uniroot(f = sampleSizeSignificanceTarget,
lower = n.l,
upper = n.u,
zo = zo,
level = level,
power = power,
alternative = alternative,
h = h,
shrinkage = shrinkage,
designPrior = designPrior)$root
}
} else { # sample size calculation based on relative effect size
zalpha <- qnorm(1- level)
zalpha <- p2z(p = level, alternative = alternative)
c <- zalpha^2/(d^2*zo^2)
}
return(c)
}
sampleSizeSignificanceNum <- Vectorize(.sampleSizeSignificanceNum_)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.