Description Usage Arguments Value Author(s) References See Also Examples
Summary statistics for the output chain of an aMTM object.
1 2 |
X |
A matrix coresponding to the outpout of a MCMC algorithm. |
cov |
A covariance matrix to compute the MSEJD with. Default is |
A vector containing the following statistics:
|
The Mean Sqaured Euclidian Jumping Distance. |
|
The Mean Sqaured Jumping Distance (using the sample variance in the Mahalanobis distance). |
|
The Frobenius norm of the multivariate ACT of the chain. |
|
The multivariate ESS of the chain as described by Vats et al. (2015). |
Simon Fontaine, simfont@umich.edu
Fontaine, S. and Bedard, M. (2019). "An Adaptive Multiple-Try Metropolis algorithm". To be submitted.
Vats, D., Flegal, J. M., and, Jones, G. L. (2015). "Multivariate Output Analysis for Markov chain Monte Carlo". arXiv preprint arXiv:1512.07713.
aMTM.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Not run:
library(aMTM)
# Banana log-density with parameter B and a
p <- function(x, p) apply(x,1,function(x) -x[1]^2/(2*p$a^2) - 1/2*(x[2]+p$B*x[1]^2-p$B*p$a^2)^2)
# setup
set.seed(1)
N<-1e5;K<-3
B<-0.04;a<-8
# aMTM sampling with ASWAM update
mcmc <- aMTM(target=p, N=N, K=K, x0=c(0,0), parms=list(a=a,B=B), burnin=0.1)
stats.aMTM(mcmc$X)
stats.aMTM(mcmc$X, diag(1:2))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.