#' RUL visualization
#'
#' Generates data_visualization
#'
#' @aliases data_visualization
#' @param df data
#' @param id_engine indentificator
#' @param cols specisly cols
#' @return a list with the following variables
#'
#' @details load input data
#'
#'
#'
#' @author Cuong Sai and Maxim Shcherbakov.
#'
#' @keywords data
#'
#' @export
visualize_RUL <- function(df, id_engine, type = "bar") {
df <- df %>% filter(id %in% id_engine)
df$id <- as.factor(df$id)
# Plot
p <- ggplot2::ggplot(df, ggplot2::aes(x = id, y = RUL, fill = id))
p <- p + ggplot2::geom_bar(stat="identity")
# ggplot2::geom_line() +
# ggplot2::geom_smooth(se = FALSE) +
# viridis::scale_color_viridis(discrete = TRUE) +
# ggplot2::facet_wrap(~ s, ncol = 3, scales = "free_y")+
# ggplot2::ggtitle("Sensor Traces") +
# ggplot2::xlab("Time (Cycles)") +
# ggplot2::ylab("Measurements") +
# ggplot2::theme(plot.title = element_text(hjust = 0.5))
if (type == "h") {
RUL <- df %>% select(id, timestamp, RUL) %>% group_by(id) %>%
summarize(rul = RUL[1])
nbins = nclass.FD(RUL$rul)
p <- ggplot2:: ggplot(RUL, aes(x = rul, y = ..density..)) +
geom_histogram(col = "red", fill = "green", alpha = 0.2, bins = nbins) +
geom_density(col = "red", size = 1)+
ggtitle("Distribution of RUL")+
theme(plot.title = element_text(hjust = 0.5))
}
print(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.