knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
devtools::install_github("fpestana-git/clusteringR",force = F) devtools::install_github("fpestana-git/visualisR",force = F)
library(clusteringR) library(dplyr) library(Seurat) library(visualisR) library(ggplot2) library(rliger) library(ggpubr) library(viridis)
# Load the PBMC dataset pbmc <- Read10X(data.dir = "../data/pbmc/")
# Run Seurat clustering using log normalization seuratLOG <- clusteringSeurat(datasetObject = pbmc,datasetName = "test",metadataAvailable = F,mapTypeValue = "umap",normalizationMethod = "LOG") # Run Seurat clustering using SCT normalization seuratSCT <- clusteringSeurat(datasetObject = pbmc,datasetName = "test",metadataAvailable = F,mapTypeValue = "umap",normalizationMethod = "SCT") # Run LIGER clustering using iNMF algorythm ligerClustering <- clusteringLiger(datasets = list(pbmc = pbmc),referenceDatasetName = "pbmc", useiNMF = T)
drawDimPlot(seuratObject = seuratLOG,datasetName = "pbmc") drawDimPlot(seuratObject = seuratSCT,datasetName = "pbmc")
drawFeaturePlot(seuratObject = seuratLOG, featureValues = c("S100A9","NKG7","LDHB","CD79A"), nrowValue = 2, ncolValue = 2, datasetName = "test")
# Visualize the variable features drawHeatmapPlot(seuratObject = seuratLOG,featureNames = c("S100A9","NKG7","LDHB","CD79A"),assaytype = "RNA",plotName = "test",groupValue = "seurat_clusters",drawLinesValue = T)
drawDotPlot(seuratObject = seuratLOG,plotName = "test",featureValues = c("S100A9","NKG7","LDHB","CD79A"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.