View source: R/combine_submodels.R
combine_submodels | R Documentation |
Combines the country model results to a global VAR model and solves it.
combine_submodels(object, period = NULL, thin = 1)
object |
a list containing the results of the country estimates, usually, the
result of a call to |
period |
an integer of the time index for which the GVAR should be solved. Only used when time varying weights or parameters are used. |
thin |
an integer specifying the thinning factor for the MCMC output. Defaults to 1 to obtain the full MCMC sequence. |
An object of class "bgvar"
.
# Load data
data("gvar2019")
# Create regions
temp <- create_regions(country_data = gvar2019$country_data,
weight_data = gvar2019$weight_data,
region_weights = gvar2019$region_weights,
regions = list(EA = c("AT", "BE", "DE", "ES", "FI", "FR", "IT", "NL")),
period = 3)
country_data <- temp$country_data
weight_data <- temp$weight_data
global_data = gvar2019$global_data
# Difference series to make them stationary
country_data <- diff_variables(country_data, variables = c("y", "Dp", "r"), multi = 100)
global_data <- diff_variables(global_data, multi = 100)
# Create time varying weights
weight_data <- create_weights(weight_data, period = 3, country_data = country_data)
# Generate specifications
model_specs <- create_specifications(
country_data = country_data,
global_data = global_data,
countries = c("US", "JP", "CA", "NO", "GB", "EA"),
domestic = list(variables = c("y", "Dp", "r"), lags = 1),
foreign = list(variables = c("y", "Dp", "r"), lags = 1),
global = list(variables = c("poil"), lags = 1),
deterministic = list(const = TRUE, trend = FALSE, seasonal = FALSE),
iterations = 10,
burnin = 10)
# Note that the number of iterations and burnin draws should be much higher!
# Overwrite country-specific specifications
model_specs[["US"]][["domestic"]][["variables"]] <- c("y", "Dp", "r")
model_specs[["US"]][["foreign"]][["variables"]] <- c("y", "Dp")
# Create estimation objects
country_models <- create_models(country_data = country_data,
weight_data = weight_data,
global_data = global_data,
model_specs = model_specs)
# Add priors
models_with_priors <- add_priors(country_models,
coef = list(v_i = 1 / 9, v_i_det = 1 / 10),
sigma = list(df = 3, scale = .0001))
# Obtain posterior draws
object <- draw_posterior(models_with_priors)
# Solve GVAR
gvar <- combine_submodels(object)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.