#' Generate a GVAR Model
#'
#' Combines the country model results to a global VAR model and solves it.
#'
#' @param object a list containing the results of the country estimates, usually, the
#' result of a call to \code{\link{draw_posterior}}.
#' @param period an integer of the time index for which the GVAR should be solved. Only used
#' when time varying weights or parameters are used.
#' @param thin an integer specifying the thinning factor for the MCMC output.
#' Defaults to 1 to obtain the full MCMC sequence.
#'
#' @return An object of class \code{"bgvar"}.
#'
#' @examples
#' # Load data
#' data("gvar2019")
#'
#' # Create regions
#' temp <- create_regions(country_data = gvar2019$country_data,
#' weight_data = gvar2019$weight_data,
#' region_weights = gvar2019$region_weights,
#' regions = list(EA = c("AT", "BE", "DE", "ES", "FI", "FR", "IT", "NL")),
#' period = 3)
#'
#' country_data <- temp$country_data
#' weight_data <- temp$weight_data
#' global_data = gvar2019$global_data
#'
#' # Difference series to make them stationary
#' country_data <- diff_variables(country_data, variables = c("y", "Dp", "r"), multi = 100)
#' global_data <- diff_variables(global_data, multi = 100)
#'
#' # Create time varying weights
#' weight_data <- create_weights(weight_data, period = 3, country_data = country_data)
#'
#' # Generate specifications
#' model_specs <- create_specifications(
#' country_data = country_data,
#' global_data = global_data,
#' countries = c("US", "JP", "CA", "NO", "GB", "EA"),
#' domestic = list(variables = c("y", "Dp", "r"), lags = 1),
#' foreign = list(variables = c("y", "Dp", "r"), lags = 1),
#' global = list(variables = c("poil"), lags = 1),
#' deterministic = list(const = TRUE, trend = FALSE, seasonal = FALSE),
#' iterations = 10,
#' burnin = 10)
#' # Note that the number of iterations and burnin draws should be much higher!
#'
#' # Overwrite country-specific specifications
#' model_specs[["US"]][["domestic"]][["variables"]] <- c("y", "Dp", "r")
#' model_specs[["US"]][["foreign"]][["variables"]] <- c("y", "Dp")
#'
#' # Create estimation objects
#' country_models <- create_models(country_data = country_data,
#' weight_data = weight_data,
#' global_data = global_data,
#' model_specs = model_specs)
#'
#' # Add priors
#' models_with_priors <- add_priors(country_models,
#' coef = list(v_i = 1 / 9, v_i_det = 1 / 10),
#' sigma = list(df = 3, scale = .0001))
#'
#' # Obtain posterior draws
#' object <- draw_posterior(models_with_priors)
#'
#' # Solve GVAR
#' gvar <- combine_submodels(object)
#'
#' @export
combine_submodels <- function(object, period = NULL, thin = 1){
if ("bgvecest" %in% class(object)) {
stop("Please transform the country-specific VECX models to VARs before using this function.")
}
# Check if only one model per country
names_object <- names(object)
for (i in names_object) {
if (sum(names_object == i) > 1) {
stop("Multiple models for the same country detected. Please choose final models before using this function.")
}
}
#### Solve GVAR model ####
# Obtain number of draws per country model
draws_i <- unlist(lapply(object, function(x){ifelse(class(x[["posteriors"]][["foreign"]]) == "list",
nrow(x[["posteriors"]][["foreign"]][[1]]),
nrow(x[["posteriors"]][["foreign"]]))}))
# Check if the number of posterior draws is equal across country models
draws <- unique(draws_i)
if (length(draws) > 1) {
stop("Number of posterior draws must be equal across all country models.")
}
tt_i <- unlist(lapply(object, function(x) {NROW(x[["data"]][["Y"]])}))
tt <- unique(tt_i)
if (length(tt) > 1) {
stop("Number of observations is not equal across all country models.")
}
# Get variables for each country model
n_countries <- length(object)
country_names <- names(object)
k_domestic_i <- unlist(lapply(object, function(x){length(x[["model"]][["domestic"]][["variables"]])}))
k_foreign_i <- unlist(lapply(object, function(x){length(x[["model"]][["foreign"]][["variables"]])}))
k <- sum(k_domestic_i) # Total number of endogenous variables
k_pos <- cumsum(k_domestic_i) - k_domestic_i
# Get lags for each country model
p_domestic_i <- unlist(lapply(object, function(x){x[["model"]][["domestic"]][["lags"]]}))
p_foreign_i <- unlist(lapply(object, function(x){x[["model"]][["foreign"]][["lags"]]}))
p <- max(c(p_domestic_i, p_foreign_i)) # Lag of endogenous variables in the global model
# Produce a vector of positions. Each position will be used during solving
# the model while the others will be omitted.
pos_thin <- seq(from = thin, to = draws, by = thin)
draws <- length(pos_thin)
# Create skeleton
result <- NULL
result[["a0"]] <- matrix(NA, k^2, draws)
result[["a"]] <- matrix(NA, k^2 * p, draws)
global_i <- unlist(lapply(object, function(x){!is.null(x[["data"]][["global"]])}))
global <- any(global_i)
if (global) {
# Get global variables
k_global_i <- unlist(lapply(object, function(x){length(x[["model"]][["global"]][["variables"]])}))
k_global <- max(k_global_i)
p_global_i <- unlist(lapply(object, function(x){x[["model"]][["global"]][["lags"]]}))
s <- max(p_global_i) # Lag of global variables in the global model
result[["b"]] <- matrix(0, k * k_global * (1 + s), draws)
}
# Get deterministic terms
deter_i <- unlist(lapply(object, function(x){!is.null(x[["data"]][["deterministic"]])}))
deter <- any(deter_i)
if (deter) {
k_deter_i <- unlist(lapply(object, function(x){ifelse(class(x[["data"]][["deterministic"]]) == "list",
ncol(x[["data"]][["deterministic"]][[1]]),
ncol(x[["data"]][["deterministic"]]))}))
k_deter <- max(k_deter_i)
result[["c"]] <- matrix(NA, k * k_deter, draws)
}
result[["sigma"]] <- matrix(NA, k * k, draws)
tvp_i <- matrix(NA, n_countries, 6)
dimnames(tvp_i) <- list(country_names,
c("domestic", "foreign", "global", "deterministic", "a0", "sigma"))
for (i in country_names) {
for (j in c("domestic", "foreign", "global", "deterministic", "a0", "sigma")) {
if (!is.null(object[[i]][["posteriors"]][[j]])) {
tvp_i[i, j] <- is.list(object[[i]][["posteriors"]][[j]])
}
}
}
tvp <- any(tvp_i, na.rm = TRUE)
if (is.null(period)) {
period <- tt
} else {
if (period > tt | period < 1) {
stop("Implausible specification of argument 'period'.")
}
}
#### Weight matrix ####
# Get a list of the used weight matrices
W <- NULL
for (i in names(object)) {
temp <- object[[i]]$data$weights
if (!"matrix" %in% class(temp)) { # If weights are time varying...
temp <- temp[,, period]
}
W <- c(W, list(temp))
}
names(W) <- names(object)
rm(temp)
cat(paste("Generating GVAR model...\n"))
pb <- utils::txtProgressBar(style = 3)
for (draw_i in 1:draws) {
# Select draw that should be used considering thinning
draw <- pos_thin[draw_i]
#### Put together A0 ####
a0_temp <- NULL
for (i in country_names) {
# Structural
if (object[[i]][["model"]][["structural"]]) {
if (!is.null(object[[i]][["posteriors"]][["a0"]]) & tvp_i[i, "a0"]) {
A0 <- matrix(object[[i]][["posteriors"]][["a0"]][[period]][draw_i, ], k_domestic_i[i])
} else {
A0 <- matrix(object[[i]][["posteriors"]][["a0"]][draw_i, ], k_domestic_i[i])
}
} else {
A0 <- diag(1, k_domestic_i[i])
}
# Contemporary foreign
if (tvp_i[i, "foreign"]) {
A0_for <- matrix(object[[i]][["posteriors"]][["foreign"]][[period]][draw_i, 1:(k_domestic_i[i] * k_foreign_i[i])], k_domestic_i[i])
} else {
A0_for <- matrix(object[[i]][["posteriors"]][["foreign"]][draw_i, 1:(k_domestic_i[i] * k_foreign_i[i])], k_domestic_i[i])
}
a0_temp <- rbind(a0_temp, cbind(A0, -A0_for) %*% W[[i]])
}
result[["a0"]][, draw_i] <- a0_temp
#### Put together G ####
for (j in 1:p) {
# Create global matrix of [A_d, A_*] for lag j
g_temp <- matrix(NA_real_, k, k)
for (i in country_names) {
# Create a country matrix [A_d, A_*] and fill it with A_D and A_*
temp_i <- matrix(0, k_domestic_i[i], k_domestic_i[i] + k_foreign_i[i])
# Domestic draws of lag j
if (j <= p_domestic_i[i]) { # If j is larger than p_domestic_i, leave the country matrix 0
if (tvp_i[i, "domestic"]) {
temp_i[, 1:k_domestic_i[i]] <- object[[i]][["posteriors"]][["domestic"]][[period]][draw, (j - 1) * k_domestic_i[i]^2 + 1:k_domestic_i[i]^2]
} else {
temp_i[, 1:k_domestic_i[i]] <- object[[i]][["posteriors"]][["domestic"]][draw, (j - 1) * k_domestic_i[i]^2 + 1:k_domestic_i[i]^2]
}
}
# foreign draws of lag j
if (tvp_i[i, "foreign"]) {
if (j <= p_foreign_i[i]) { # If j is larger than p_foreign_i, leave the country matrix 0
temp_i[, k_domestic_i[i] + 1:k_foreign_i[i]] <- object[[i]][["posteriors"]][["foreign"]][[period]][draw, j * k_domestic_i[i] * k_foreign_i[i] + 1:(k_domestic_i[i] * k_foreign_i[i])]
}
} else {
if (j <= p_foreign_i[i]) { # If j is larger than p_foreign_i, leave the country matrix 0
temp_i[, k_domestic_i[i] + 1:k_foreign_i[i]] <- object[[i]][["posteriors"]][["foreign"]][draw, j * k_domestic_i[i] * k_foreign_i[i] + 1:(k_domestic_i[i] * k_foreign_i[i])]
}
}
g_temp[k_pos[i] + 1:k_domestic_i[i],] <- temp_i %*% W[[i]]
rm(temp_i)
}
# Store
result[["a"]][(j - 1) * k^2 + 1:k^2, draw_i] <- matrix(g_temp)
rm(g_temp)
}
#### Put together H ####
if (global) {
for (j in 1:(s + 1)) {
h_temp <- matrix(0, k, k_global)
for (i in country_names) {
if (j <= p_global_i[i] + 1) {
if (tvp_i[i, "global"]) {
h_temp[k_pos[i] + 1:k_domestic_i[i],] <- object[[i]][["posteriors"]][["global"]][[period]][draw, (j - 1) * k_domestic_i[i] * k_global_i[i] + 1:(k_domestic_i[i] * k_global_i[i])]
} else {
h_temp[k_pos[i] + 1:k_domestic_i[i],] <- object[[i]][["posteriors"]][["global"]][draw, (j - 1) * k_domestic_i[i] * k_global_i[i] + 1:(k_domestic_i[i] * k_global_i[i])]
}
}
}
# Store
result[["b"]][(j - 1) * k * k_global + 1:(k * k_global), draw_i] <- h_temp
rm(h_temp)
}
}
#### Put together D ####
if (deter) {
d_temp <- matrix(0, k, k_deter)
for (i in country_names) {
if (deter_i[i]) {
if (tvp_i[i, "deterministic"]) {
d_temp[k_pos[i] + 1:k_domestic_i[i],] <- object[[i]][["posteriors"]][["deterministic"]][[period]][draw, ]
} else {
d_temp[k_pos[i] + 1:k_domestic_i[i],] <- object[[i]][["posteriors"]][["deterministic"]][draw, ]
}
}
}
# Premultiply by A0_i and store
result[["c"]][, draw_i] <- d_temp
rm(d_temp)
}
#### Put together Sigma ####
sigma_temp <- matrix(0, k, k)
for (i in country_names) {
if (tvp_i[i, "sigma"]) {
sigma_temp[k_pos[i] + 1:k_domestic_i[i], k_pos[i] + 1:k_domestic_i[i]] <- object[[i]][["posteriors"]][["sigma"]][[period]][draw, ]
} else {
sigma_temp[k_pos[i] + 1:k_domestic_i[i], k_pos[i] + 1:k_domestic_i[i]] <- object[[i]][["posteriors"]][["sigma"]][draw, ]
}
}
result[["sigma"]][, draw_i] <- sigma_temp
rm(sigma_temp)
utils::setTxtProgressBar(pb, value = draw_i / draws)
}
# Convert posterior draws to coda objects ----
mc_start <- unique(unlist(lapply(object, function(x){ifelse(class(x[["posteriors"]][["foreign"]]) == "list",
attributes(x[["posteriors"]][["foreign"]][[1]])$mcpar[1],
attributes(x[["posteriors"]][["foreign"]])$mcpar[1])})))
mc_end <- unique(unlist(lapply(object, function(x){ifelse(class(x[["posteriors"]][["foreign"]]) == "list",
attributes(x[["posteriors"]][["foreign"]][[1]])$mcpar[2],
attributes(x[["posteriors"]][["foreign"]])$mcpar[2])})))
mc_thin <- unique(unlist(lapply(object, function(x){ifelse(class(x[["posteriors"]][["foreign"]]) == "list",
attributes(x[["posteriors"]][["foreign"]][[1]])$mcpar[3],
attributes(x[["posteriors"]][["foreign"]])$mcpar[3])})))
mc_seq <- seq(from = mc_start, to = mc_end, by = mc_thin)[pos_thin]
mc_start <- mc_seq[1]
mc_thin <- mc_seq[2] - mc_seq[1]
result[["a0"]] <- coda::mcmc(t(result[["a0"]]), start = mc_start, thin = mc_thin)
result[["a"]] <- coda::mcmc(t(result[["a"]]), start = mc_start, thin = mc_thin)
if (global) {
result[["b"]] <- coda::mcmc(t(result[["b"]]), start = mc_start, thin = mc_thin)
}
if (deter) {
result[["c"]] <- coda::mcmc(t(result[["c"]]), start = mc_start, thin = mc_thin)
}
result[["sigma"]] <- coda::mcmc(t(result[["sigma"]]), start = mc_start, thin = mc_thin)
#### Create variable index ----
result[["data"]][["endogen"]] <- NULL
data_names <- NULL
country_names <- NULL
for (i in names(object)) {
result[["data"]][["endogen"]] <- cbind(result[["data"]][["endogen"]], object[[i]][["data"]][["domestic"]])
data_names <- c(data_names, dimnames(object[[i]][["data"]][["domestic"]])[[2]])
country_names <- c(country_names, rep(i, length(dimnames(object[[i]][["data"]][["domestic"]])[[2]])))
}
dimnames(result[["data"]][["endogen"]])[[2]] <- data_names
index <- data.frame("country" = country_names,
"variable" = data_names,
stringsAsFactors = FALSE)
result[["index"]] <- index
# Model specs
result[["model"]] <- list()
result[["model"]][["endogen"]] <- list(variables = data_names, lags = p)
# Collect raw data ----
## Put together deterministic terms ----
if (deter) {
data_names <- NULL
for (i in names(object)) {
if (object[[i]]$model$type == "VEC" & !is.null(object[[i]]$data$deterministic)) {
if (!is.null(object[[i]]$data$deterministic$unrestricted)) {
result$data$deterministic <- cbind(result$data$deterministic, object[[i]]$data$deterministic$unrestricted)
data_names <- c(data_names, dimnames(object[[i]]$data$deterministic$unrestricted)[[2]])
}
if (!is.null(object[[i]]$data$deterministic$restricted)) {
result$data$deterministic <- cbind(result$data$deterministic, object[[i]]$data$deterministic$restricted)
data_names <- c(data_names, dimnames(object[[i]]$data$deterministic$restricted)[[2]])
}
} else {
result$data$deterministic <- cbind(result$data$deterministic, object[[i]]$data$deterministic)
data_names <- c(data_names, dimnames(object[[i]]$data$deterministic)[[2]])
}
}
dimnames(result$data$deterministic)[[2]] <- data_names
pos_det_name <- NULL
pos_det <- NULL
for (i in 1:length(data_names)) {
if (!data_names[i] %in% pos_det_name) {
pos_det_name <- c(pos_det_name, data_names[i])
pos_det <- c(pos_det, i)
}
}
temp_tsp <- stats::tsp(result$data$deterministic)
result$data$deterministic <- stats::as.ts(as.matrix(result$data$deterministic[, pos_det]))
dimnames(result$data$deterministic)[[2]] <- pos_det_name
stats::tsp(result$data$deterministic) <- temp_tsp
# Update specs
result[["model"]][["deterministic"]] <- list(variables = pos_det_name)
}
## Put together global data ----
if (global) {
exogen <- NULL
exogen_names <- NULL
for (i in names(object)) {
if (global_i[i]) {
data_names_i <- dimnames(object[[i]][["data"]][["global"]])[[2]]
pos <- which(!data_names_i %in% exogen_names)
if (length(pos) > 0) {
exogen <- cbind(exogen, object[[i]][["data"]][["global"]][, pos])
exogen_names <- c(exogen_names, data_names_i[pos])
}
}
}
temp_tsp <- stats::tsp(exogen)
result[["data"]][["global"]] <- stats::as.ts(as.matrix(exogen))
dimnames(result[["data"]][["global"]])[[2]] <- exogen_names
stats::tsp(result[["data"]][["global"]]) <- temp_tsp
# Update specs
result[["model"]][["global"]] <- list(variables = exogen_names, lags = s)
}
class(result) <- list("bgvar", "list")
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.