#' Linear Transformation of a Generalized Ellipsoid
#'
#' Linear transformation of a generalized ellipsoid, including projections to
#' subspaces.
#'
#' The matrix \code{A} can be non-singular, for a standard linear
#' transformation, or singular, for a projection to a subspace.
#'
#' @param A A matrix describing a linear transformation, conforming to the U
#' component of \code{G} for matrix multiplication.
#' @param G A \code{gell} object
#' @param epsfac Factor of \code{.Machine$double.eps} used to distinguish zero
#' vs. positive singular values
#' @return \code{gell} object
#' @note This implementation should be changed so that it provides an S3 method
#' for class \code{"gell"} objects for which it was intended.
#' @author Georges Monette
#' @seealso \code{\link{gell}}, \code{\link{dual}}, \code{\link{signature}}
#' @keywords dplot algebra
#' @export
#' @examples
#'
#' (zplane <- gell(span = diag(3)[,1:2])) # a plane
#'
#' dual(zplane) # orthogonal line
#' (zplane2 <- gmult( cbind( c(1,1,1), c(1,-1,0), c(1,0,-1)), zplane))
#'
#' # correctly wipes out one dimension
#' (zplane3 <- gmult( cbind( c(1,0,0), c(1,0,0), c(0,0,1)), zplane))
#'
#'
gmult <-
function( A , G , epsfac = 2){
# Linear transformation of an ellipsoid
gell( A = A %*% G$u, d = G$d, epsfac = epsfac)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.