###############################################
###########Indian Dataset and ML ##############
data_india <- data_rec %>%
dplyr::filter(country == "India")
data_india$country <- NULL
data_india$covid_tested <- as.factor(data_india$covid_tested)
########## Dividing Data into training and testing #########################################
###Set seed #####
set.seed(22)
##################
split1 <- createDataPartition(data_india$covid_tested, p = .70)[[1]]
training_data_india <- data_india[split1,]
testing_data_india <- data_india[-split1,]
prop.table(table(training_data_india$covid_tested))
library(DMwR)
smote_train_india <- SMOTE(covid_tested ~., data = training_data_india, perc.over = 100, perc.under = 200)
table(smote_train_india$covid_tested)
smote_train_india$country <- NULL
preProcValues <- preProcess(smote_train_india[, -30],
method = c("center", "scale", "YeoJohnson", "nzv"))
transformed_india <- predict(preProcValues, newdata = training_data_india)
################################################################################
# Obtain different perfomances measures, two wrapper functions
# For Accuracy, Kappa, the area under the ROC curve,
# sensitivity and specificity
library(caret)
library(pROC)
fiveStats <- function (...)c(twoClassSummary(...),
defaultSummary(...))
# Everything but the area under the ROC curv
fourStats <- function(data, lev=levels(data$obs), model =NULL){
accKapp <- postResample(data[, "pred"], data[, "obs"])
out<- c(accKapp,
sensitivity(data[,"pred"], data[,"obs"], lev[1]),
specificity(data[,"pred"], data[,"obs"], lev[2]))
names(out)[3:4] <- c("Sens", "Spec")
out
}
#data_india$covid_tested <- as.factor(data_india$covid_tested)
########## Dividing Data into training and testing #########################################
###Set seed #####
##################
split1 <- createDataPartition(data_four_countries$covid_tested, p = 0.8, list = FALSE)
training_data_four_countries <- data_four_countries[split1,]
testing_data_four_countries <- data_four_countries[-split1,]
library(MASS)
set.seed(22)
model <- glm(covid_tested ~., data = training_data_four_countries, family = binomial) %>%
stepAIC(trace = FALSE)
full_model <- glm(covid_tested ~., data = training_data_four_countries, family = binomial)
coef(full_model)
step_model <- full_model %>% stepAIC(trace = FALSE)
coef(step_model)
### Compare the full and the stepwise models
# Make predictions ###
probalities <- full_model %>% predict(testing_data_four_countries, type = "response", se.fit = FALSE)
predicted.classes <- ifelse(probabilities > 0.5, "pos", "neg")
observed_classes <- testing_data_four_countries$covid_tested
mean(predicted.classes == observed_classes)
table_perf = data.frame(model=character(0),
auc=numeric(0),
accuracy=numeric(0),
sensitivity=numeric(0),
specificity=numeric(0),
kappa=numeric(0),
stringsAsFactors = FALSE)
ctrl <- trainControl(method = "repeatedcv",
number = 10,
repeats = 5,
classProbs = TRUE,
summaryFunction = fiveStats,
verboseIter = TRUE,
allowParallel = TRUE)
mtryValues = c(1,3,5,7,9)
tunegrid <- expand.grid(.mtry = c(1:10))
rf_india_tuned <- caret::train(covid_tested ~.,
data = transformed_india,
method = "rf",
trControl = ctrl,
ntree = 1500,
tuneGrid = data.frame(.mtry = mtryValues),
tuneLength = 5,
metric = "ROC",
na.action = na.exclude)
rf_india_tuned
eval_results_india <- predict(rf_india_tuned, testing_data_india, type = "prob")[,1]
predict_rf_india <- ifelse(eval_results_india<0.5, "positive", "negative")
cm_rf_india <- confusionMatrix(predict_rf_india, testing_data_india$covid_tested)
############### GLM and Step wise selection
data_four_countries <- data_categ_fin %>%
dplyr::filter(country == "India" | country == "United Kingdom" | country == "Phillipines" | country == "Pakistan") %>%
dplyr::filter(chills != "Chills" | temperature != "38.2-39")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.