Description Usage Arguments Value Author(s) References Examples
View source: R/link_predictors.R
Given a network of interest, it computes the likelihood score of interaction, for all disconnected node pairs, based on the embedding of the network to d-dimensional Euclidean space with ISOMAP.
1 |
g |
igraph; The network of interest. |
d |
integer; The dimension of the embedding space. |
use_weights |
logical; Indicates whether edge weights should be used to compute shortest paths between nodes. |
Tibble with the following columns:
nodeA |
The ID of a network node. |
nodeB |
The ID of a network node. |
scr |
The likelihood score of interaction for the node pair. |
Gregorio Alanis-Lobato galanisl@uni-mainz.de
Tenenbaum, J. B. (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319-2323
Kuchaiev, O. et al. (2009) Geometric de-noising of protein-protein interaction networks. PLoS Comput. Biol. 5:e1000454
1 2 | # Apply the ISOMAP link predictor to the Zachary Karate Club network
iso <- lp_isomap(g = karate_club, d = 2, use_weights = FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.