s2_feature_reduction: s2 feature reduction

Description Usage Arguments Examples

View source: R/s2_feature_reduction_function.r

Description

This function does feature reduction and visualization on normalized voom counts

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
s2_feature_reduction(
  countfile = "./s1_norm_raw_counts_results/1.norm_matrix.txt",
  targetfile = "./p1_modified_count_matrix_results/targets_mod.csv",
  target_columns = c(2, 5),
  figres = 100,
  pca = TRUE,
  UMAP = TRUE,
  tsne = TRUE,
  base_file_name = "vnorm.png"
)

Arguments

countfile

normalized counts table (generally should have been generated by first step s1_normalize_raw_counts, but also this function can be run on raw cout file).

targetfile

target file.

target_columns

columns from the target file to label samples on the pca/umap plots (has to be 2)

figres

resolution at which to output figures (default is 300).

pca

run principal component analysis (and singular vector decomposition) (default set to TRUE)

UMAP

run Uniform Manifold Aproximation Projection (default set to TRUE)

base_file_name

file name for all figures

Examples

1
s2_feature_reduction(countfile="./s1_norm_raw_counts_results/1.norm_matrix.txt",  targetfile="./p1_modified_count_matrix_results/target_file.csv", target_columns=c(2,5), base_file_name="vnorm.png")

galelab/GaleGEAnalysis documentation built on May 18, 2020, 7:32 a.m.