Description Usage Arguments Examples
View source: R/s2_feature_reduction_function.r
This function does feature reduction and visualization on normalized voom counts
1 2 3 4 5 6 7 8 9 10 | s2_feature_reduction(
countfile = "./s1_norm_raw_counts_results/1.norm_matrix.txt",
targetfile = "./p1_modified_count_matrix_results/targets_mod.csv",
target_columns = c(2, 5),
figres = 100,
pca = TRUE,
UMAP = TRUE,
tsne = TRUE,
base_file_name = "vnorm.png"
)
|
countfile |
normalized counts table (generally should have been generated by first step s1_normalize_raw_counts, but also this function can be run on raw cout file). |
targetfile |
target file. |
target_columns |
columns from the target file to label samples on the pca/umap plots (has to be 2) |
figres |
resolution at which to output figures (default is 300). |
pca |
run principal component analysis (and singular vector decomposition) (default set to TRUE) |
UMAP |
run Uniform Manifold Aproximation Projection (default set to TRUE) |
base_file_name |
file name for all figures |
1 | s2_feature_reduction(countfile="./s1_norm_raw_counts_results/1.norm_matrix.txt", targetfile="./p1_modified_count_matrix_results/target_file.csv", target_columns=c(2,5), base_file_name="vnorm.png")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.