rsq=function(y,d,method="multinom",k=3,...){
num=k
option=method
if(num==3){
#y is the tri-nomial response, i.e., a single vector taking three distinct values, can be nominal or numerical
#d is the continuous marker, turn out to be the probability matrix when option="prob"
y=as.numeric(y)
d=data.matrix(d)
n1=sum(y==1)
n2=sum(y==2)
n3=sum(y==3)
nn=n1+n2+n3
ro1=n1/nn
ro2=n2/nn
ro3=n3/nn
#define the id
if(option=="multinom"){
#require(nnet)
fit <- nnet::multinom(y~d,...)
predict.test.probs <- predict(fit,type='probs')
predict.test.df <- data.frame(predict.test.probs)
#extract the probablity assessment vector
pp=predict.test.df
}else if(option=="tree"){
#require(rpart)
y <- as.factor(y)
fit <- rpart::rpart(y~d,...)
predict.test.probs <- predict(fit,type='prob')
predict.test.df <- data.frame(predict.test.probs)
#extract the probablity assessment vector
pp=predict.test.df
}else if(option=="svm"){
#require(e1071)
y <- as.factor(y)
fit <- e1071::svm(y~d,...,probability = T)
predict.test <- predict(fit,d,probability = T)
predict.test <- attr(predict.test,"probabilities")
predict.test.df <- data.frame(predict.test)
#extract the probablity assessment vector
pp=predict.test.df[c("X1","X2","X3")]
}else if(option=="lda"){
#require(MASS)
fit <- MASS::lda(y~d,...)
predict.test.probs <- predict(fit,type='probs')
predict.test.fit <- predict(fit)
predict.test <- predict.test.fit$posterior
predict.test.df <- data.frame(predict.test)
#extract the probablity assessment vector
pp=predict.test.df
}else if(option=="prob"){
pp_sum <- apply(d,1,sum)
a <- pp_sum<0.999 | pp_sum>1.001
b <- sum(a)
if (b!=0){
cat("ERROR: The input value \"d\" should be a probability matrix.")
return(NULL)
}
pp=d
}
pv=pp
rsq=(
stats::var(pv[,1])/(ro1*(1-ro1))+
stats::var(pv[,2])/(ro2*(1-ro2))+
stats::var(pv[,3])/(ro3*(1-ro3))
)/3/nn*(nn-1)
return(rsq)
}else if(num==4){
#y is the quandr-nomial response, i.e., a single vector taking three distinct values, can be nominal or numerical
#d is the continuous marker, turn out to be the probability matrix when option="prob"
y=as.numeric(y)
d=data.matrix(d)
n1=sum(y==1)
n2=sum(y==2)
n3=sum(y==3)
n4=sum(y==4)
nn=n1+n2+n3+n4
ro1=n1/nn
ro2=n2/nn
ro3=n3/nn
ro4=n4/nn
#define the id
if(option=="multinom"){
#require(nnet)
fit <- nnet::multinom(y~d,...)
predict.test.probs <- predict(fit,type='probs')
predict.test.df <- data.frame(predict.test.probs)
#extract the probablity assessment vector
pp=predict.test.df
}else if(option=="tree"){
#require(rpart)
y <- as.factor(y)
fit <- rpart::rpart(y~d,...)
predict.test.probs <- predict(fit,type='prob')
predict.test.df <- data.frame(predict.test.probs)
#extract the probablity assessment vector
pp=predict.test.df
}else if(option=="svm"){
#require(e1071)
y <- as.factor(y)
fit <- e1071::svm(y~d,...,probability = T)
predict.test <- predict(fit,d,probability = T)
predict.test <- attr(predict.test,"probabilities")
predict.test.df <- data.frame(predict.test)
#extract the probablity assessment vector
pp=predict.test.df[c("X1","X2","X3","X4")]
}else if(option=="lda"){
#require(MASS)
fit <- MASS::lda(y~d,...)
predict.test.probs <- predict(fit,type='probs')
predict.test.fit <- predict(fit)
predict.test <- predict.test.fit$posterior
predict.test.df <- data.frame(predict.test)
#extract the probablity assessment vector
pp=predict.test.df
}else if(option=="prob"){
pp_sum <- apply(d,1,sum)
a <- pp_sum<0.999 | pp_sum>1.001
b <- sum(a)
if (b!=0){
cat("ERROR: The input value \"d\" should be a probability matrix.")
return(NULL)
}
pp=d
}
pv=pp
rsq=(stats::var(pv[,1])/(ro1*(1-ro1))+stats::var(pv[,2])/(ro2*(1-ro2))+stats::var(pv[,3])/(ro3*(1-ro3))+stats::var(pv[,4])/(ro4*(1-ro4)))/4/nn*(nn-1)
return(rsq)
}else if(num==2){
#y is the quandr-nomial response, i.e., a single vector taking three distinct values, can be nominal or numerical
#d is the continuous marker, turn out to be the probability matrix when option="prob"
y=as.numeric(y)
d=data.matrix(d)
n1=sum(y==1)
n2=sum(y==2)
nn=n1+n2
ro1=n1/nn
ro2=n2/nn
#define the id
if(option=="multinom"){
#require(nnet)
fit <- nnet::multinom(y~d,...)
predict.test.probs <- predict(fit,type='probs')
predict.test.df <- data.frame(predict.test.probs)
#extract the probablity assessment vector
pp=predict.test.df
pp <- data.frame(1-pp,pp)
}else if(option=="tree"){
#require(rpart)
y <- as.factor(y)
fit <- rpart::rpart(y~d,...)
predict.test.probs <- predict(fit,type='prob')
predict.test.df <- data.frame(predict.test.probs)
#extract the probablity assessment vector
pp=predict.test.df
}else if(option=="svm"){
#require(e1071)
y <- as.factor(y)
fit <- e1071::svm(y~d,...,probability = T)
predict.test <- predict(fit,d,probability = T)
predict.test <- attr(predict.test,"probabilities")
predict.test.df <- data.frame(predict.test)
#extract the probablity assessment vector
pp=predict.test.df[c("X1","X2")]
}else if(option=="lda"){
#require(MASS)
fit <- MASS::lda(y~d,...)
predict.test.probs <- predict(fit,type='probs')
predict.test.fit <- predict(fit)
predict.test <- predict.test.fit$posterior
predict.test.df <- data.frame(predict.test)
#extract the probablity assessment vector
pp=predict.test.df
}else if(option=="prob"){
pp_sum <- apply(d,1,sum)
a <- pp_sum<0.999 | pp_sum>1.001
b <- sum(a)
if (b!=0){
cat("ERROR: The input value \"d\" should be a probability matrix.")
return(NULL)
}
pp=d
}
pv=pp
rsq=(stats::var(pv[,1])/(ro1*(1-ro1))+stats::var(pv[,2])/(ro2*(1-ro2)))/2/nn*(nn-1)
return(rsq)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.