# general 1D [zonally averaged] domain
# general climate forecast parameters for ebm1d model
CF <- list()
CF$path <- list()
CF$path$data <- dsndat
CF$region <- region
CF$event <- event
CF$scn <- scn
CF$path$hpcscript <- file.path(dsndat, region, event, scn, 'input','serialHLRN.sh')
CF$modexe <- 'runEbm1Djgp'
CF$staTStr <- "1900-01-01 00:00:00 GMT" #
CF$endTStr <- "2000-01-01 00:00:00 GMT" #
CF$m <- 5*1 # np=5,me=3, total ensemble size: for pFKF or 'pIKF' this must exactly multiply the number of parameters
CF$npc <- 1 # number of processors [coworkers] for HPC forecast
CF$hpc <- 'GEO' # %in% ['c2a','cca','essc','mac','hlrn','GEO']
CF$mpi <- FALSE # mpi for R-DA
CF$mcmode <- 1 # 1 for MonteCarlo simulation | 0 for parameter inheritance
CF$mo <- CF$m # for pre-calibrated models (mcmode==0) this has to NULL
CF$inh <- list() # non-empty list for mcmode == 0
CF$inh$prior <- file.path(PERM,'ebm1d/data/general/present/...') # previous simulation just used if CF$mcmode = 0
CF$inh$stat <- 'E'
CF$inh$decreasing <- TRUE
# INPUT to &run_parameters namelist -> model
rp <- list()
rp$startTime <- 0.0 # [yr]
rp$endTime <- rp$startTime+100 # [yr] 100 yr simulation up to present day
rp$deltaT <- 2*12*3600 # [s] model timestep
rp$initialConditionsFileName <- 'modern_climatology.dat' # input to R -> *_????.dat to F90
rp$restartDataFileName <- 'restart.dat' # input to R -> forward unmodified to F90
rp$referenceDataFileName <- 'zeros.dat'
rp$observationsFileName <- 'modern_climatology.dat'
CF$rp <- rp; rm(rp)
# map time into POSIX second times for DA analyses
CF$staT <- as.POSIXct(CF$staTStr, origin=originTimeStampTZ, tz='GMT')
CF$endT <- as.POSIXct(CF$endTStr, origin=originTimeStampTZ, tz='GMT')
#CF$staT <- CF$rp$startTime * yr # [s]
#CF$endT <- CF$rp$endTime * yr # [s]
## imStr <- '0001'
## writeRunParameters(CF$rp, file.path(dsnsim,'input',imStr), 'RunParameters.nml')
## grid parameters
grp <- list()
grp$jmt <- 20 # number of lat grid points (calculated are [2,jmt-1]. End points are boundaries)
grp$dxtdeg <- 360.0
grp$dxudeg <- 360.0
grp$dytdeg <- rep(10.0, grp$jmt) # REAL, DIMENSION(jmt)
grp$dyudeg <- rep(10.0, grp$jmt) # REAL, DIMENSION(jmt)
grp$yt <- seq(-95,95, by=10) # REAL, DIMENSION(jmt)
grp$yu <- seq(-90,100,by=10) # REAL, DIMENSION(jmt)
CF$grp <- grp; rm(grp)
CF$omaskf <- 'omask.tif' # land-sea mask [1 for ocean]. Geometadata is obtained from this map. path relative to regionp
CF$rSphere <- 6378137 # [m] assumed earth radius for filter localisation
#RF$demf <- 'demfilled_patch.tif' # enhanced-connectivity DEM [m]
#RF$hrusf <- 'hrus.tif' # HRU class map [0=out of domain]
#RF$dproj <- CRS('+init=epsg:27700') # region projection. 27700 :: British National Grid, Ordnance Survery 1936
CF$nLongTermPeriods <- 3 # F90 hardcoded (Cost1DParameters.f90) <-> ncol(y[...))
CF$cp_iAnn <- 3 # annual mean
CF$yfnames <- 'readOb.R'
anagen <- list() # generic analysis item
anagen$u <- TRUE # updated by the analysis?
anagen$ll <- 0.0 # global filtering
anagen$infac <- 1.0 # no inflation
anagen$min <- -Inf # no lower bound
anagen$pos <- c(NA,NA) # [NA,NA] => no localisation
anagen$trf <- 'none' # no transformation
ana <- list()
ana$i_tsfc <- anagen # initial conditions: surface temperature degC
ana$i_tsfc$u <- FALSE # positions later updated
ana$i_tsfc$ll <- 5000*km
ana$tsfc_feb <- anagen # surface temperature degC
ana$tsfc_feb$ll <- 5000*km # positions later updated
ana$tsfc_aug <- anagen # surface temperature degC
ana$tsfc_aug$ll <- 5000*km # positions later updated
# model global parameters - must be synchronous with header_mc.R
ana$hocn <- anagen # [m] ocean mixed-layer depth
ana$hocn$trf <- 'log'
ana$alw <- anagen # [W m^(-2)] constant term in linearized longwave radiation
ana$diff0 <- anagen # [m^2 s^(-1)] diffusion coefficients: constant factor
ana$diff0$trf <- 'log' # natural logarithm
ana$diff2 <- anagen # [-]
ana$diff4 <- anagen # [-]
CF$ana <- ana; rm(ana)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.