Description Usage Arguments Value Examples
View source: R/MyLogistic_function.R
Function that implements multi-class logistic regression.
1 | LRMultiClass(X, y, Xt, yt)
|
X |
n x p training data, 1st column should be 1s to account for intercept |
y |
a vector of size n of class labels, from 0 to K-1 |
Xt |
ntest x p testing data, 1st column should be 1s to account for intercept |
yt |
a vector of size ntest of test class labels, from 0 to K-1 |
A list of two elements,
beta |
p x K matrix of estimated beta values after numIter iterations |
error_train |
(numIter + 1) length vector of training error % at each iteration (+ starting value) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | X1 <- matrix(rnorm(50, -3, 1), 50, 1)
Y1 <- matrix(c(0), 50, 1)
X2 <- matrix(rnorm(50, 3, 1), 50, 1)
Y2 <- matrix(c(1), 50, 1)
X <- c(X1, X2)
Y <- c(Y1, Y2)
X <- as.matrix(X)
Y <- as.matrix(Y)
random <- sample(nrow(X))
X <- as.matrix(X[random, ]) # training data from two normal distributions
Y <- as.matrix(Y[random, ]) # class labels for training data
# creating test data
X1t <- matrix(rnorm(10, -3, 1), 10, 1)
Y1t <- matrix(c(0), 10, 1)
X2t <- matrix(rnorm(10, 3, 1), 10, 1)
Y2t <- matrix(c(1), 10, 1)
Xt <- c(X1t, X2t)
Yt <- c(Y1t, Y2t)
Xt <- as.matrix(Xt)
Yt <- as.matrix(Yt)
random <- sample(nrow(Xt))
Xt <- as.matrix(Xt[random, ]) # testing data from the same two normal distributions
Yt <- as.matrix(Yt[random, ]) # class labels for testing data
# adding columns of 1's to training and testing data
colX1 <- rep(1, nrow(X))
X <- cbind(colX1, X)
colXt1 <- rep(1, nrow(Xt))
Xt <- cbind(colXt1, Xt)
output <- LRMultiClass(X, Y, Xt, Yt)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.