View source: R/gbm-baseline-hazard.r
baseline_hazard | R Documentation |
Computes the Breslow estimator of the baseline hazard function for a proportional hazard regression model - only for censored survival data.
baseline_hazard(surv_times, delta, coxph_preds, eval_times=NULL, smooth=FALSE,
cumulative=TRUE)
surv_times |
the survival times - an atomic vector of doubles |
delta |
the censoring indicator - a vector same length as surv_times |
coxph_preds |
the predicted values of the regression model on the log hazard scale |
eval_times |
values at which the baseline hazard will be evaluated |
smooth |
if |
cumulative |
if |
The proportional hazard model assumes h(t|x)=lambda(t)*exp(f(x)).
gbmt
can estimate the f(x) component via partial likelihood.
After estimating f(x), baseline_hazard
can compute a nonparametric
estimate of lambda(t).
a vector of length equal to the length of surv_times (or of length
eval_times
if eval_times
is not NULL
) containing the baseline
hazard evaluated at t (or at eval_times
if eval_times
is not
NULL
). If cumulative
is set to TRUE
then the returned
vector evaluates the cumulative hazard function at those values.
James Hickey, Greg Ridgeway gregridgeway@gmail.com
N. Breslow (1972). "Discussion of 'Regression Models and Life-Tables' by D.R. Cox," Journal of the Royal Statistical Society, Series B, 34(2):216-217.
N. Breslow (1974). "Covariance analysis of censored survival data," Biometrics 30:89-99.
survfit
, gbmt
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.